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We examine numerically the yielding or failure of small granular packings subjected to an increasing
deviatoric stress. As the load increases, the packing softens and the number of sliding contacts rises. When the
packing fails, the kinetic energy starts to rise exponentially in time. It is always possible to identify a contact
status change that triggers the collapse of the packing. Furthermore, by use of the stiffness matrix, we show
that this change often causes a mechanical instability or a motion with neutral stability. In some cases, the
status change provokes an oscillation and a second status change following shortly thereafter introduces an
instability. Failure can also be considered from the perspective of energy flux: before failure, the energy
injected by the load is stored as potential energy in the contacts. When this is no longer possible, failure occurs
and the injected energy is converted to kinetic energy. However, the force disequilibrium then soon becomes
the dominant energy source.
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I. INTRODUCTION

A granular material subjected to a slowly increasing ex-
ternal force often “fails” or “yields” �1,2�: after remaining
nearly motionless, it suddenly starts to flow. This phenom-
enon is of both practical and fundamental interest. On the
practical side, anyone who builds a house must be sure that
the soil under the foundations will not yield. On the funda-
mental side, failure might be an example of a jamming tran-
sition and its characteristics may therefore be compared with
those of the glass transition �3,4�. Yet failure poses several
fundamental questions. First of all, what triggers failure? As
the external load increases, small changes are always occur-
ring inside the assembly, yet it does not yield. Finally, one
change must trigger failure. Why does this particular change
cause failure and not any of the preceding ones? Once the
trigger is identified, the onset of failure is the problem of
interest. How is the flowing motion initiated? What is its
source of energy?

In this paper, we tackle these questions from a “structural
mechanics perspective” �5�. One considers the granular as-
sembly as a load-bearing structure and investigates its re-
sponse to small changes in the load. Failure appears as an
instability. Central to this approach is the stiffness matrix,
which relates small displacements of the particles to changes
in the force. This matrix can be analyzed to determine the
stability of the assembly and thus to predict failure �5–9�.
Furthermore, this matrix can be constructed for particles of
arbitrary shape �5,6� and also for circular particles with both
sliding and nonsliding contacts �9,10�. The stiffness matrix
has been applied to failure in only a few limited cases: clus-
ters of grains in a shear band �7� and a single particle stuck in
a wedge-shaped channel �9�. The simplicity of this latter case
permitted a detailed view of failure to be glimpsed. Failure is
triggered by a change at a single contact that modifies how
the packing responds to the external load. Using the stiffness
matrix, one can explain how this change renders the assem-
bly unstable.

Is this same process at work in larger, more complicated
packings? To answer this question, we consider in this paper
packings of 16 particles. This is an order of magnitude more
than one particle, but still many orders of magnitude less
than typical situations where we would like to understand
failure. But these packings of 16 particles are a logical first
step because they can be subjected to a detailed analysis.
Specifically, the contact status changes can easily be sepa-
rated in time enabling us to identify the ones that trigger
failure. We hope that this knowledge can be exploited when
treating larger assemblies, where, besides these phenomena,
correlation effects might alter the behavior.

As described in Sec. II, we simulate assemblies of 16
particles contained in a biaxial box subjected to an increasing
deviatoric stress. After a brief review of stiffness matrix
theory in Sec. III, we study the effects of this increasing load
in Sec. IV. In Sec. V, we identify the different events that
trigger failure and analyze the onset of motion.

II. NUMERICAL PROCEDURE

A. Contact model

Grains are modeled as disks and their interactions are cal-
culated using the common “soft-sphere molecular dynamics”
method �11�. The force at the grain contact is generated by a
linear dissipative spring whose length is given by the overlap
distance Dn:

Fn = − knDn − �nḊn. �1�

Here, kn is the length-independent spring stiffness and the
damping coefficient �n controls the damping. The overlap
distance Dn is calculated from the radii ri and rj of the touch-
ing particles and their positions xi and x j,

Dn = �xi − x j� − ri − rj . �2�
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When the surfaces of the two touching disks move relative to
each other a second force Ft arises, directed tangent to the
particle surfaces. In analogy with the normal force defined in
Eq. �1� we have

Ft = − ktDt − �tḊt. �3�

In our case kt=kn and �t=�n. Determining the change in the

tangential spring length Ḋt involves both translational move-
ment and rotation of the two touching particles i and j,

Ḋt = − ri�i − rj� j +
ri + rj

ri + rj − Dn
�vi − v j� · t . �4�

Here, �i and � j are the angular velocities of the touching
particles and t is a vector tangent to the particle surfaces at
the point of contact. The factor in front of the last term is
needed to account for the overlap of the particles.

In our simulation we allow only for repulsive forces,
Fn�0. We also enforce the Coulomb condition at each con-
tact,

�Fn � �Ft� . �5�

At a given moment, contacts where the strict inequality holds
are nonsliding contacts, whereas contacts with �Fn= �Ft� are
sliding.

B. Units and parameters

Three parameters are set to unity for all simulations: the

particle density �̂, the initial system length L̂, and the pres-
sure p̂. This defines our system of units. In two dimensions,

the unit of force is f̂ = p̂L̂ and the unit of energy is Ê= p̂L̂2.

The unit of mass is m̂= �̂L̂2, whereas the time is measured in

units of t̂= L̂��̂ / p̂. The spring stiffness, which is an important
parameter in this paper, has a value of kn,t=1600p̂. This leads
to overlaps that are a small fraction of the radius: on average,
we have Dn,t /r�0.3%. The damping is �n,t=6m̂ / t̂ and the
Coulomb friction coefficient is �=0.25. No gravity is ap-
plied to the particles.

C. Boundary conditions

We apply biaxial boundary conditions. These are easy
to implement and simple to handle. In each direction,
the granular packing is delimited by a lightweight �mass
0.01m̂� moveable wall parallel to one of the coordinate axes,
as shown in Fig. 1. A force is applied to each boundary that
can be constant or time dependent. In this way, one can fix
the average stress inside the granular packing. The deforma-
tion of the packing can be determined by monitoring the
movements of the boundaries. In our setup, the walls are
perfectly slippery; i.e., they exert only normal forces. This
has several advantages. First, the forces on opposite walls are
guaranteed to be equal. Second, the number of degrees of
freedom is reduced and last but not the least, larger systems
are more homogeneous. The effect of boundary conditions
will be assessed by comparing systems of different sizes in
Sec. V F.

D. Preparation procedure

The two-dimensional granular medium is made up of
disks with radii r uniformly distributed within the range
�0.07, 0.1� and initial velocity in the range vx ,vy
� �−0.5,0.5�. The initial radii and velocities are chosen using
a random number generator and a series of packings is gen-
erated by changing the “seed.” The resulting assemblies ob-
tained essentially differ in contact topology and the spatial
distribution of the grain sizes. In this paper, we study a set of
26 different configurations of 16 disks.

The frictionless particles are initially separated, but a con-

stant external force f0=0.8 f̂ is applied to each of the walls,
so that they move inward and compress the grains into a

packing of approximate size 0.8L̂ capable of transmitting
normal forces. During the compression process, kinetic en-
ergy is removed by the damping at particle contacts. Certain
motions, however, require special care. For example, the ve-
locity of the center of mass cannot be damped by contact
forces, and thus a global viscous damping is applied for 10t̂.

The kinetic energy decreases to �6.9�0.1�10−8Ê. The main
reservoir of remaining kinetic energy is particles without
contacts. To remove their energy, a viscous damping force
opposing the individual grain movement is then applied for

40t̂ and the remaining kinetic energy is �3.0�6.1�10−9Ê. At
the end of the preparation, friction is turned on.

E. Loading the sample

The configurations obtained are submitted to an increas-
ing external force along the vertical axis, whereas the hori-
zontally applied forces remain unchanged. The vertical force
increase is linear,

fext,y�t� = f0 + 	t . �6�

To obtain a pressure p= f0 /L that is approximately unity, we

choose f0=0.8 f̂ . The prefactor 	 determines the value of the
very small force increment per time step. We wish to study
failure in the quasistatic limit, meaning that the applied force
at which the assembly fails is independent of 	. We checked
that our simulations are quasistatic by performing runs with
different load velocities �Fig. 2�, and we choose 	

=1.28 10−3 f̂ / t̂. At the beginning, a parabolic matching is
applied to obtain a continuous differentiable force curve.

FIG. 1. Biaxial boundary conditions.
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III. THEORETICAL BACKGROUND

A. Rattlers

We begin our theoretical considerations by discussing a
simple but frequent event that can complicate the analysis: it
is possible for a grain to float inside a void, occasionally
colliding with its neighbors. Such grains are called “rattlers.”
To some granular properties, rattlers contribute like other
grains, e.g., the packing fraction of the granular assembly,
where they contribute with a few percent. On the other hand,
rattlers do not transmit forces and thus do not contribute to
the load-bearing properties of the packing. Let us give an
example: the stiffness of the granular assembly relates the
change in external forces to the displacements of the walls. If
rattlers are removed from the packing, then the stiffness will
not change. Since rattlers do not contribute to the stiffness,
we will remove them whenever we discuss the assembly’s
stability and refer in the following to the remaining number

of grains as Ñ.

B. Global hyperstatic number

Hyperstaticity is defined as the difference between the
number of contact forces and the number of particle forces
�12,13�. Here “contact forces” mean the normal and tangen-
tial forces at the contacts, and “particle forces” mean the
total forces and torques exerted on the particles. In static
equilibrium, the particle forces vanish, hence the contact
forces must balance each other. When the number of contact
forces is superior to the number of particle forces, the pos-
sible ways to choose the contact forces form a set whose
dimension is called global hyperstatic number H. Does H
decrease with increasing deviatoric stress and vanish at the
time when the packing collapses? We will discuss our simu-
lation results in Sec. IV C.

To clarify the idea of hyperstaticity, we will first introduce
a convenient representation of the forces. First, we group the

forces in x and y directions, �fx , fy�, and the torque 
, exerted
on particle i, into a vector f i. Then, we also group the normal
and tangent contact forces at contact �, Fn, and Ft, into a
vector F�:

f i = � f i,x

f i,y


i/ri
	, F� = 
F�,n

F�,t
� . �7�

Now we gather these quantities into a vector f for all Ñ
particles and a vector F for all M contacts,

f =�
f1

f2

]

f Ñ

	 =�
f1,x

f1,y


1/r1

]

f Ñ,x

f Ñ,y


Ñ/rÑ

	 �8�

and

F =�
F1

F2

]

FM

	 =�
F1,n

F1,t

]

FM,n

FM,t

	 . �9�

Note that the f i are linearly related to the F�, thus f is linearly
related to F,

f = cF , �10�

where c is a matrix that maps from the contact force space
onto the particle force space �10�.

In equilibrium, the particle forces f will balance the exter-
nally imposed forces fext, f+ fext=0. In other words, the pack-
ing is stable when the equation

fext = − cF �11�

has at least one solution. If the external forces are given, then
Eq. �11� is simply a system of linear equations from which
we can attempt to calculate the contact forces F. Let us in-
vestigate the possibility of solving this system. We begin by
comparing the number of unknowns with the number of
equations. On the left side of the equation we have three

force components for each of the Ñ particles �rattlers are not
considered�, and also three components for the Nwalls walls,

Ep = 3�Ñ + Nwalls� . �12�

Now let us consider the number of contact forces. When all
contacts are nonsliding, it is Ec=2M. But, when a contact
becomes sliding, Eq. �5� tells us that �Ft�=�Fn, and the num-
ber of independent contact forces is reduced by one, because
the tangential force can be derived from the normal one.
Note that sliding contacts can slide only in one direction,
whereas a motion in the other direction would cause the con-
tact to become nonsliding. This might introduce a complica-

FIG. 2. Strain along the direction of the changing external force.
Failure is characterized by a sudden change in strain. When the
external force is changed slowly enough, �i.e., dfext /dt�10−2� the
time of failure depends solely on the critical value of the external
force and not on its rate of change. During failure, the assemblies
behavior is not quasistatic anymore, as can be seen from the differ-
ent strain values attained thereafter.
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tion, which we do not take into account here. Thus the num-
ber of independent contact forces is reduced by the number
of sliding contacts Ms,

Ec = 2M − Ms. �13�

In our case, all contacts with the walls are always sliding
because the walls are perfectly slippery. The dimension of
the solution space of Eq. �11� is given by the degree of hy-
perstaticity,

H = Ec − Ep + S . �14�

S accounts for trivial free motions that appear due to the
boundary conditions. First, the vector sum of the external
forces on the walls is zero �no center of mass motion�. This
contributes two degrees of freedom to S. Second, the tangen-
tial forces and the torques on the walls are zero �frictionless
walls�. This adds two trivial motions for each of the four
walls to S. Note that, on the contrary, a global rotation re-
quires nonzero forces, as it implies that the walls are pushed
outward while their orientations are fixed. Hence this is not a
free motion and does not add to S. We will see in Sec. V B
that additional free motions can appear that add to S. Some-
times, but not always, these motions trigger the collapse of
the assembly.

When H�0, the granular assembly is hyperstatic, and the
solution of Eq. �11� is not unique �12�. If H=0, the number
of contact forces equals the particle forces, and the solution
must be unique.

It has been shown by other authors �14,15� that assem-
blies of frictionless grains are isostatic in the limit of very
low external forces or equivalently very high stiffnesses. The
behavior of frictional assemblies, however, can be different
�13,16,17�. We will discuss the degree of hyperstaticity ob-
served in our simulations in Sec. IV C.

C. Quasistatic evolution

The degree of hyperstaticity characterizes static systems.
In simulations one wishes to change external parameters and
to study the system’s response. In the quasistatic limit, a
system’s time-dependent properties �i.e., energy, forces, etc.�
are independent of the rate at which any varying external
parameter �e.g., stress� is changed. To be precise, one is in-
terested to study a succession of static states S1 ,S2 , . . . of the
system that differ by small amounts in the external param-
eters V1 ,V2 , . . .. If the system is quasistatic, then each state Si
depends only on Vi �and possibly Vi−1 ,Vi−2 , . . .�, but not on
how fast the transitions between the preceding states are
made.

In our case, the only varying external parameter is the
magnitude of vertical external forces applied to the confining
walls. It is slowly increased at a constant rate 	. In Fig. 2 we

show the strain at failure for various 	. At 	=1.28 10−3 f̂ / t̂,
the load at failure is very sharply defined and does not
change when 	 is reduced further. Thus we choose this value.

D. Stiffness matrix

1. Definition

Even in the quasistatic limit there will be small particle
motions, because the slowly changing external force will be
transmitted throughout the packing, introducing small dis-
placements of all the grains toward a new equilibrium con-
figuration. The equations that govern this motion can be writ-
ten in matrix form �10�:

mv̈ = ḟext − c�cTv̇ − ċF − kv . �15�

Here, m is a diagonal matrix containing the masses and mo-
ments of inertia of all the particles. The vector v contains the
velocities of the particles �both translational and angular� and
is organized the same way as f in Eq. �8�. The left-hand side
is thus the accelerations of the particles differentiated once
with respect to time.

On the right-hand side are the forces, again differentiated
with respect to time. The first term is the change in the ex-
ternal forces and the second arises from the damping forces;
the diagonal matrix � contains the damping coefficients and
matrix c is the same as in Eq. �10�. The last two terms ex-
press the change in the contact forces due to the change in
position of the particles. A change in the geometry of the
contact alters the direction of force transmission and this is
described by the third term which constitutes the geometric
stiffness of the assembly. This term is discussed in more
detail in Appendix B. The last term is the change in contact
forces due to the change in spring lengths and constitutes the
mechanical stiffness. The matrix k is called the stiffness ma-
trix and is determined by the geometry of the contact net-
work and the contact statuses:

k = cKScT. �16�

The geometry enters into matrix c �8–10� �see Appendix B�,
and the square matrix S contains all information about the
contact statuses. Therefore matrix S is the only part that
changes when contacts become sliding. If all contacts are
nonsliding, matrix S is diagonal and of full dimension. But
every sliding motion decreases this dimension, increasing the
kernel by one dimension. Furthermore sliding contacts make
matrix S become asymmetric. Matrix K is always diagonal
and contains the contacts normal and tangential stiffnesses.

Equation �15� can be simplified under two assumptions.
In the case of hard particles, the typical deformation D is
much smaller than the particles radius r, Dr. This defines
the so called quasirigid limit. The second assumption is that
emerging vibrations are small enough so that their contribu-
tion to Eq. �15� can be neglected. This is the case if the
lifetime of vibrations is significantly smaller than the fre-
quency at which changes in the stiffness appear due to the
change in external force, or alternatively when the vibrations
can be separated from the slow deformation of the packing
�10�. When this assumption, the so-called quasistatic limit, is
also fulfilled, the last term on the right side is dominant:

ḟext = kv . �17�
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In this equation, the particle velocities only depend on ḟext
and k and they are completely independent of the grains’

masses. Since ḟext is constant and k only changes when a
status change arises, the impact of such a contact status
change can be noticed in a simultaneous sudden change in
the velocity.

2. Accuracy of the stiffness matrix approach

We can check the validity of the assumptions leading to
Eq. �17� by constructing the stiffness matrix k, extracting v
from the simulations, and calculating the relative error:

� =
�ḟext − kv�

�ḟext�
. �18�

Figure 3 shows the mean and maximum error for our granu-
lar assemblies. The values for 
�−0.9 are not shown be-
cause they correspond to the beginning of the simulation
where a parabolic force matching is applied �see Sec. II E�.
For 
�0 �before failure�, the mean error is less than 5% and
the maximum error is about 5% above this value. Close to

=0, the maximum error rises sharply and attains 38.6%.
During failure, which lasts until about 
=0.01, both the
mean error and the maximum error are much higher. This is
because some of the terms in the equations of motion that
have been neglected in the derivation of Eq. �17� become
important. After failure, vibrations lead to large errors, hence
the average error remains large.

3. Particle velocities

If Eq. �17� could be solved for v, the validity of the theory
could be proven by comparing the result with the simulation
velocities. However, k has no inverse, because certain mo-
tions, such as a translation of the system, lead to no change

in the forces. Nevertheless, a pseudoinverse k̃ of the stiffness

matrix can be defined that disregards these movements. We

require that k̃kv=v if v is orthogonal to the kernel of k, and

k̃kv=0 if v belongs to the kernel of k. Then k̃ can be used to
predict the velocities v:

vth ª k̃ḟext. �19�

The index “th” indicates that the velocities are predicted

theoretically. Our procedure for constructing k̃ is described
in Appendix A.

E. Stability

Now let us consider the stability of the packing. One cri-
terion is �5–7,9�

vkv � 0. �20�

Note that whenever we write a matrix between two vectors,
we mean that two scalar products are calculated, hence the
result is a scalar. To be precise, we do not carry along the
sign for the transposition of the left-hand side vectors.

Whenever the inequality in Eq. �20� is violated, instability
will occur. When this happens, we have to re-evaluate the
assumptions leading to Eq. �17�. But let us first show which
types of instability can occur. One possibility is

vkv � 0. �21�

When this equation is satisfied, a small displacement in the
direction of v leads to a force that amplifies this displace-
ment. A particular clear discussion of this is given in Ref.
�5�. Another type of instability occurs when

vkv = 0. �22�

As discussed in Sec. III D 3, Eq. �22� always holds for some
motions. It is therefore necessary to inspect the vectors v: if
they correspond to trivial motions, such as the uniform trans-
lation of all the particles, Eq. �22� does not signal failure, but
simply expresses the translation invariance of space. On the
other hand, if they correspond to nontrivial motions, then Eq.
�22� indicates that the packing is unstable and fails.

The numerical results in the next few sections show that
these statements must be nuanced. The reason for this is that
the criteria in Eqs. �21� and �22� are based on Eq. �17�, which
in turn is based on the dominance of kv over the other terms
in Eq. �15�. But as the load increases, kv decreases, so that
other terms may become important.

In the most common case the geometric stiffness becomes
significant. In Eq. �15�, it is written as ċF, but since ċ is
proportional to v, it can be rewritten �5�:

ċF = kgeov . �23�

The stability of the packing depends on the total stiffness
ktot=k+kgeo, and not just the mechanical stiffness k. Thus,
Eq. �21� should be modified to read

vktotv = vkv + vkgeov � 0. �24�

The geometric stiffness is usually much smaller than the me-
chanical one for the reasons outlined in Appendix B. Hence
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FIG. 3. Relative error of the stiffness matrix approach �Eq.
�18��. The figure shows the maximum error and the mean error of
26 assemblies from the beginning of the simulation at 
=−1,
through the failure at 
=0, and after failure. Note that failure lasts
from 
=0 to about 
=0.01. One source of error are vibrations; they
are especially important after failure has happened.
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it represents a small correction to the total stiffness. But, it is
always destabilizing in our simulations, so that it can cause a
packing to fail even though it should be stable according to
Eq. �20�. The other term that can become important as vkv
becomes small is the inertia term on the left-hand side of Eq.
�15�. At contact status changes, the velocities change and
vibrations appear. The vibrations are a consequence of the
inertia term. We will come back to this in Sec. IV E.

F. Kinetic energy during failure

Finally, we would like to understand what drives failure
by analyzing the different sources of kinetic energy. When
failure occurs, the grains begin to move and their kinetic
energy increases. This kinetic energy must come from
somewhere—it must either be injected into the system by the
forcing or originate from the potential energy stored in the
grains.

Let us begin by recalling the expression for the kinetic
and potential energies:

Ekin =
vmv

2
, Epot =

DKD

2
. �25�

Here, the diagonal matrix K contains the spring constants,
and D is a vector containing the spring lengths, organized the
same way as the contact forces in Eq. �9�. We will consider
the first and second derivatives of these quantities with re-
spect to time. In addition, we will make use of Eq. �15�, and
Eq. �29� from �10�,

mv̇ = cF + fext. �26�

To simplify the calculations, we will neglect the damping
��=0 in Eq. �15��. The first two derivatives of Ekin are

Ėkin = vmv̇ = v�fext + cF� ,

Ëkin = v̇mv̇ + vmv̈ . �27�

With Eqs. �15� and �26�, the second derivative of the kinetic
energy can be written as

Ëkin = �fext + cF�m−1�fext + cF� + vḟext − vkv + vċF .

�28�

The first term is the contribution from the force imbalance.
As it is quadratic in �fext+cF�, it is non-negative. The second
term is the contribution from the increase in the external
forces. The next two terms are related to the geometric and
mechanical stiffnesses. This can be seen by comparing Eq.
�28� with Eq. �15�.

If one calculates the second derivative of the potential
energy, and assumes all the contacts are nonsliding, one ob-
tains

Ëpot = − �cF�m−1�fext + cF� − vḟext + vkv − vċF . �29�

We can combine Eqs. �28� and �29� to obtain

Ëkin + Ëpot = vḟext + v̇fext. �30�

This is simply a statement of the conservation of energy.
During failure, the kinetic energy increases and the energy

must come from the other terms. By calculating them, one
can determine whether failure is driven by released potential
energy or the external load.

We observe from the simulation results that Ekin always
rises exponentially during failure: Ekin�e�t. This means that
the velocities must also increase exponentially. Failure is a
collective rearrangement process, hence we can substitute the
velocity vector by its length �v�. Its time dependence is �v�
�e�t/2.

If we consider the various terms in Eq. �28�, we can de-
termine which ones can drive failure. An exponential rise in
Ekin is possible only if the dominate term on the right-hand
side is also proportional to Ekin. Table I shows the depen-
dence of all contributions on �v�. Three of them are candi-
dates for driving failure: the force imbalance, the mechanical
stiffness, and the geometric stiffness. The last is proportional
to Ekin because the change in contact geometry ċ is propor-
tional to the particle velocities, which is shown in Appendix
B. The term vḟext, arising from the change in the external
load, is proportional only to �v�, and thus is not capable of
sustaining the exponential growth of the kinetic energy.

IV. LEADING UP TO FAILURE

In this section, we determine principal quantities of the
granular packing describing its state on the way to failure.
First of all, some contacts will become sliding when the ex-
ternal force is uniaxially increased. Their fraction increases
on the way to failure. We also inspect the number of rattlers.
It remains roughly constant. Then, we examine the degree of
hyperstaticity. It decreases as the external load increases and
becomes very small close to the failure. Finally, we discuss
the stiffness of the packing that decreases as failure is ap-
proached.

The granular assemblies in this paper are small, therefore
each of them will have its proper yield threshold. This
threshold can be determined with precision because failure is
always preceded by a contact status change that triggers fail-
ure. The time when this event occurs will be written as ttrigger
and corresponds to a maximum dimensionless deviatoric
stress Rtrigger= �f�ttrigger�− f0� / f0. To merge both the simula-
tion beginning and the time of failure for the different assem-
blies, simulation results are plotted as a function of the res-
caled time 
:


 =
t − ttrigger

ttrigger
. �31�

When t approaches ttrigger, the time scale on which property
changes occur will be much finer. Then we will use again the

TABLE I. Dependence of the energy contributions on v during
failure. We used Eq. �26� to write mv̇ for the forces appearing in the
first line.

�v��e�t/2 Contribution Dependence Key relation

Force imbalance v̇m−1v̇ �vv v̇ /v=const

Change in load vḟext �v

Mech. stiffness −vkv �vv

Geometric stiffness vċF �vv ċ�v
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smaller simulation time units of t− ttrigger. Both time scales
are centered around the time ttrigger where the trigger mecha-
nism occurs. Its average is ttrigger=734�436t̂ and the maxi-
mum dimensionless deviatoric stress is Rtrigger=1.08�0.70.

A. Sliding contacts

When we increase the deviatoric part of the external stress
on the packing, the number of sliding contacts rises �18,19�,
as shown in Fig. 4. The number of sliding contacts increases
linearly for 
�−0.8, but then this increase slows. From 

�−0.1 until the time of failure, the number of sliding con-
tacts is approximately constant.

When the granular assembly fails, many contact rear-
rangements occur leading to fluctuations in the number of
sliding contacts that are not resolved in the above figure.
After failure, all grain-grain contacts will become nonsliding
again and only the contacts with the smooth walls contribute
to the value in Fig. 4. When the external force is increased
further, the number of sliding contacts rises again.

B. Fraction of rattlers

The principal question is whether or not the occurrence of
rattlers is related to the failure of granular material. One can
imagine that rearrangement processes will occasionally force
grains to stay without any contact to their surrounding neigh-
bors. But our results tell us that on average already one rat-
tler exists at the beginning of the simulation. One origin
could be the rigid boundary conditions that we apply. Imag-
ine a system of 16 equally sized particles on a square lattice
confined by four walls, then 12 of the 16 particles will touch
the walls. Now let some of the particles shrink whereas other
are allowed to grow in radius. In this system it happens that
one of the grains is “trapped” in a region enclosed by other
particles and the walls, but stays without contacts. Two of
such rattlers are shown in Fig. 5. The number of rattlers stays

constant during the simulation and increases only slightly
through the rearrangement process. Hence, rattlers are not
important for failure.

C. Global hyperstatic number

The graph of the number H=Ec−Ep+S of the degree of
hyperstaticity, averaged over the granular assemblies inves-
tigated, is shown in Fig. 6. At the beginning of the simula-
tion, the granular assemblies are hyperstatic with H=6.3 on
average. When the deviatoric strain is increased as indicated
in Fig. 1, the value decreases rather quickly in the beginning,
but this change slows significantly when approaching the
time when failure occurs. The data plotted in the graph are
too coarse to show what happens at the time of failure.

The lower graph in Fig. 6 shows the degree of hypersta-
ticity close to the trigger mechanism. Before the trigger oc-
curs, the granular assemblies are on average hyperstatic.
Through the trigger at t= ttrigger, the average H falls by 0.3
units and immediately attains its minimum value. This indi-
cates that the trigger event is the essential mechanism that
renders the granular assembly unstable. Shortly thereafter H
increases slightly. In the interval after ttrigger, which consti-
tutes the region when the granular assembly starts to fail, the
average of H does not change significantly.

In all of the assemblies investigated we find values of H
close to zero, showing that the number of “excess” contact
forces is very small. We imagine two effects that make the
value of H somewhat noisy. First, there are, in certain cases,
movements not leading to failure but involving all the grains,
as discussed in Sec. III D 3 and shown in Fig. 5. Second, not
all of the grains must necessarily move relative to each other
when the assemblies fail. There might be just a few grains
that displace at one common velocity but relative to the other
grains in the assembly. Indeed, we observed that in larger
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FIG. 4. Fraction of sliding contacts averaged over 26 different
seeds. The fraction increases until the time when the assembly fails.
During the deformation process, the fraction drops abruptly and the
intergranular contacts stop sliding when the assembly attains a new
stable state. The remaining fraction is the contacts with the smooth
walls.

FIG. 5. Rotation mode with zero stiffness: whenever four grains
form a square and touch each other, they rotate at the same speed
but in opposite directions at their points of contact. �The rotations
are indicated by the segment of a circle inside each grain; the seg-
ments start at the rightmost position and point in the direction of
rotation. Their lengths indicate the speed.� Grains without indicated
rotation are rattlers.
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systems rearrangements mainly organize in shear bands, and
H is significantly above zero at all times.

We did not pursue the evaluation of H at the granular
scale, but leave this point for future investigations. Based on
the diversity of individual behavior, we conclude that the
absence of hyperstaticity H=0 is not a global property of
granular assemblies at failure. Rather, it is necessary to iden-
tify special regions where failure is initiated �such as in the
shear band�.

D. Softening of the granular assembly

On the macroscopic scale the stiffness can be measured
from the response of the walls to the force increment. When
we increase the forces, the deviatoric stress also increases at
the rate

�̇D =
ḟext,y

Lx
. �32�

The deviatoric strain is

	D =
�Ly

Ly
−

�Lx

Lx
. �33�

One measure of the stiffness is thus

kmacro =
�̇D

	̇D

. �34�

On the other hand, we can estimate the stiffness on the mi-
croscopic scale:

kmicro =
�ḟext�
�v�

. �35�

An expression for kmicro, based on the stiffness matrix, can be
established by first defining the normalized vectors n ḟext

= ḟext / �ḟext�, and nv=v / �v�, and then multiplying Eq. �17� from
the left by v /vv. Note that vv is scalar. One thus obtains

kmicro = n ḟext
knv � 
vkv

vv
� 1

n ḟext
nv

. �36�

The quadratic form vkv that appears in the microscopic stiff-
ness is the essential term in the stability criteria presented in
Sec. III E, and a negative or vanishing stiffness leads to fail-
ure. The mean value of n ḟext

nv is 0.09 showing that the part

of v parallel to ḟext is small. Note that Eqs. �35� and �36� are
furthermore not identical because Eq. �36� assumes Eq. �17�,
whereas Eq. �35� does not.

Figure 7 shows stiffness values calculated from different
definitions. They exhibit the same qualitative time depen-
dence: when we approach the onset of failure, the granular
assembly will get much softer and attain its minimum value
around 
=0. As we will see in the next section, the stiffness
drops sharply at the time of failure, but the time scale in Fig.
7 is too coarse to reveal this. After the failure, stability is
soon fully recovered.
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When a contact status change triggers the collapse, this leads on
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E. Stiffness transitions

Figure 7 is an average over 26 simulations and should not
lull one into thinking that the stiffness decreases smoothly
and continuously in the simulations. In fact, the stiffness in-
creases and decreases stepwise and the steps correspond to
contact status changes. Whereas for the frictionless grains
contacts can only open or close, friction makes possible four
additional transitions, two from sliding to the other states and
two vice versa. For both, frictional or frictionless particles,
the steps correspond to contact status changes. In Fig. 8, we
show one such event, where a contact becomes sliding at t
�246.35t̂. Both before and after this event, the stiffness and
the kinetic energy are constant, and the status change causes
the stiffness to drop to a new level, while the kinetic energy
rises. If the system was perfectly quasistatic, the transition
would be instantaneous and without oscillation. To under-
stand these oscillations in detail, let us use stiffness matrix
theory. When the contact becomes sliding, there is an abrupt
change in certain elements of the stiffness matrix, i.e., one
has k=k1 for t�246.35t̂, and k=k2 for t�246.35t̂. Apply-

ing Eq. �17� gives ḟext=k1v1=k2v2, for ḟext is constant. At t
=246.35t̂, therefore, Eq. �17� predicts an instantaneous
change in the velocities. But the particles have a finite inertia
and cannot change their velocities instantaneously. The status
change in Fig. 8 is thus accompanied by a disturbance that is
damped out after roughly ten oscillations or 1.5t̂. The distur-
bance is accounted for by the inertia term mv̈ and the damp-
ing term c�cTv̇ in Eq. �15�. If these terms are included, the
equation of motion thus becomes

mv̈ = ḟext − c�cTv̇ − kv , �37�

which is a vectorized version of a damped harmonic oscilla-
tor. This explains the damped oscillations present in Fig. 8.

We include this detailed discussion of an example of a
stiffness transition, because the vibrations involved therein
will become important again in Sec. V C. We will now turn
our attention to failure itself.

V. TRIGGERING FAILURE

Before the grains velocities start to rise, there is always a
contact status change that leads to a change of the stiffness
matrix k. This change provokes the collapse of the assembly.
Three different trigger mechanisms can occur: first, a contact
status change can lead to a “negative stiffness” of the contact
network, i.e., vkv�0. Second, a null mode can cause the
violation of Eq. �17� due to the loss of mechanical stability.
Finally, there is a third possibility not foreseen in Ref. �9�:
the packing can become unstable as it makes a transition
between two different stable states.

A. Mechanical instability (vkv�0)

When the quadratic form vkv becomes negative, the as-
sembly becomes unstable for the reasons discussed in Sec.
III E. In Fig. 9, we show data from one simulation where this
happens. There is a contact status change at t= ttrigger, which
provokes a drop in vkv. But, as can be seen in the figure, it
takes a finite time for vkv to become negative and for the
kinetic energy to start to rise exponentially.

We can show the drop in vkv is caused by the contact
status change by calculating vthkvth, where vth is given in Eq.
�19�. This quantity reveals the correspondence of contact sta-
tus change and velocity adjustment because it instanta-
neously changes �see Sec. III D 3�. On the other hand vkv is
calculated using the velocities v from the simulation. The
particle masses m in Eq. �15� define the time scale needed
for v to change. Also, v oscillates before failure indicating
the presence of vibrations. In any case, however, it is clear
that the contact status change provokes an instability in the
packing causing it to fail.

To understand more fully the mechanism of failure, let us
examine the various contributions to the second derivative of
the kinetic energy shown in Fig. 10. Before failure occurs,
there is an equilibrium between three terms. The energy in-
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jected by the external forcing �vḟext� and the geometric stiff-
ness �vċF� contribute to the kinetic energy. This energy is
removed by the mechanical stiffness �vkv�.

At t= ttrigger, a contact status change occurs and vkv be-
gins to decrease toward 0. It can no longer absorb the energy
injected by the other two terms and the kinetic energy starts
to rise. A short time later, the force imbalance �v̇mv̇� rises
and becomes the dominant source of kinetic energy through-
out the rest of the failure. At t= ttrigger+0.7, the kinetic energy
reaches a maximum, more than 4 orders of magnitude above
its initial value. The system then starts to search for a new
equilibrium configuration.

B. Null-mode trigger

The second failure mechanism that can occur is the dis-
appearance of mechanical rigidity. This means that there is
some motion v0 to which the packing opposes no resistance.
This occurs when the dimension of the kernel of k increases
due to a contact status change and v0 is the dimension that
has been added to the kernel. If v0 is compatible with the
boundary conditions, then its amplitude will grow rapidly.

In Fig. 11, we show the data from a simulation where
failure is triggered by the appearance of a null mode. At t
= ttrigger, there is a contact status change that causes the kernel
of k to increase by one dimension. This was determined by
constructing k both for and after the contact status change
and then carrying out a singular value decomposition. Note
that the behavior of vkv is similar to Fig. 9: it drops sharply
at t= ttrigger. On the other hand, vthkvth behaves quite differ-
ently because these two quantities diverge at t= ttrigger. The
reason for this will be discussed below.

In Fig. 12, we show the new null mode that appears at the
contact status change. As one can see, it corresponds to a
crushing of the granular assembly between the upper and
lower walls, which is exactly the kind of motion expected at
failure. In the figure, the top row is moving to the right, and
the second row to the left, meaning that the top row will slip

down into valleys formed by the second row, so that the
packing will go roughly from square to triangular. The slid-
ing contacts are marked by gray or black circles, with the
black circle indicating the contact that becomes sliding when
the null mode appears.

Further evidence of the null-mode failure is shown in Fig.
13, where the fraction of the velocity attributed to the null
mode is plotted. It rises rapidly at the contact status change
and quickly dominates the motion. This figure also explains
the divergence of vkv and vthkvth in Fig. 12. After failure,
we have v�v0, so that kv�0. On the other hand, vth is
orthogonal to v0 by construction. Thus calculating vth misses
failure completely. This should be kept in mind whenever the
stiffness matrix is used to calculate the motion of the pack-
ing.

Another subtlety is that the presence of a null mode is not
sufficient to cause failure. Figure 5 shows an example of a
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FIG. 12. The null mode that triggers failure in Fig. 11. Velocities
are indicated by arrows and angular velocities are represented by a
circle segment inside the corresponding grain. Grains for which no
velocity is shown are rattlers. When the null mode occurs, the con-
tact marked by the black circle starts to slide. The other sliding
contacts are indicated by gray circles.
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null mode that does not cause failure. It is a global rotation
mechanism, in which the assembly consists of loops com-
prising four grains. In these loops, the grains in contact rotate
opposite to each other and the absolute value of angular ro-
tation times the grains radius is a constant for all the grains.
No friction opposes this movement, and hence the energy
stored in the rotation remains unchanged until it will be con-
verted back to potential energy at the time when this null
mode disappears due to an opening or closing contact.

Another issue is the increase in kinetic energy after fail-
ure. As shown in Fig. 14, the kinetic energy rises exponen-
tially but it is not clear why this should happen. If one as-
sumes that the null mode is independent of the other
motions, the kinetic energy should rise with the fourth power
of time �see Appendix D� �9�. For certain examples of null
mode failure, it is possible to fit the beginning of the curves
of kinetic energy to polynomials of the form At4+Bt2+C,
where the coefficients obey the scalings predicted in Appen-

dix D. However, the kinetic energy then soon rises exponen-
tially. The reason for this can be seen in Fig. 14: the force
imbalance becomes large. Why this would happen is puz-
zling at first sight because the null mode should not change
the forces by definition. However, all these considerations
neglect the geometric stiffness, which is always destabiliz-

ing. Hence, Ëkin contains only positive contributions. There-
fore, the kinetic energy injected by geometric stiffness �vċF�
and external forcing �vḟext� generates the force disequilib-
rium, which in turn generates the exponential growth of ki-
netic energy.

C. Ambushed transitions

In four out of the 26 simulations, failure seems to begin
before an instability has appeared. One example is shown in
Fig. 15. There is a contact status change at t= ttrigger and the
energy begins to rise. The packing, however, is stable. As
one can see, vkv�0, and it is large enough to dominate the
geometric stiffness. Furthermore, no null modes are present.
Note, however, that the increase in kinetic energy is slower
than exponential for t− ttrigger�0.5. At around t− ttrigger=0.5,
a second status change occurs and the energy then rises ex-
ponentially.

We believe that the initial increase in the kinetic energy is
due to an oscillation associated with a stiffness transition
very similar to the one shown in Fig. 8. At t− ttrigger=0.5, an
instability appears and it is this instability that causes failure.
We call this phenomenon an “ambushed transition,” because
there is first a transition from one stable state to another one.
But during the very short transition period, an instability oc-
curs. Thus, the initial rise in kinetic energy is due to a tran-
sition, but it is the instability that finally causes it to become
very large.

When the stiffness is very low, vibrations of very low
frequency often occur. These are damped insufficiently and
are therefore long lasting. Note that the stiffness for 0� t
− ttrigger�0.5 is extremely low: vktotv�0.5. Two of the other
three simulations displaying ambushed transitions also ex-
hibit a very low stiffness, with �vthkvth� / �vthvth��1. This is
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smaller than the stiffness observed in all the other stable
configurations.

However, one case did not fit this pattern. It is shown
in Fig. 16. The kinetic energy begins to grow rapidly,
even though the packing is still stable. Note that
�vthkvth� / �vthvth��4 just after ttrigger, a value we could ob-
serve in other stable packings as well. One example can be
seen in Fig. 9, where �vthkvth� / �vthvth��4 before failure. We
therefore checked if the initial energy rise was part of an

oscillation by running the same simulation with ḟext reduced
by a factor of 10. When this is done, the status change at t
− ttrigger�0.1 is postponed until t− ttrigger�0.5. Shortly before
the second status change, the kinetic energy starts to decrease
showing that the first rise in energy is part of an interrupted
oscillation.

Changing ḟext also allows us to see that this failure mecha-
nism is not purely quasistatic, for if it were, the instability

would arise always at the same value of fext. But when ḟext is
reduced, failure occurs at a smaller value of fext. Thus the
oscillation plays an essential role in failure. On the other
hand, if the appearance of the instability depended only on
the oscillation, the separation in time between the two status
changes would not change. But we observe that this time
does indeed change. Thus both the oscillation and the value
of fext have a role.

Another question is the curious nature of some of the
transitions in Fig. 16. For example, just before failure, the
curve �vthkvth� / �vthvth� shoots up to about 30, off the scale of
the graph, and then suddenly drops down to about 5. This is
not an error but a sign of a null mode that appears rapidly
and then disappears. Such compound transitions are dis-
cussed in the next section.

D. Compound status changes

Figure 16 illustrates another phenomenon that is some-
times observed: a sequence of status changes. Apart from the
contact status change at t= ttrigger, several other events are

indicated by short vertical arrows at the bottom of the figure.
These events can also be seen from �vthkvth� / �vthvth�: when
this quantity jumps upward to a value above the top of the
graph, a null mode has appeared and when it returns to a
lower value, that null mode disappears. Each appearance and
disappearance is associated with a contact status change.

To understand what is happening, Fig. 17 shows the se-
quence of contact status changes until t= ttrigger in Fig. 16.
The transition as a whole involves a shift in the location of a
single sliding contact. The system passes between these two
states via a third state in the middle panel, where both con-
tacts are sliding. Each of the three states corresponds to a
different stiffness: the left-hand state is relatively stiff and
corresponds to �vkv� / �vv��17 �t− ttrigger�−0.02 in Fig.
16�, the middle to the existence of a null mode �t− ttrigger
=−0.02�, and the last state to a reduced stiffness of
�vkv� / �vv��4 �t= ttrigger�.

Such “compound contact status changes” are observed
several other times in Fig. 16 and occasionally in other sys-
tems. In Fig. 16, a compound contact status change is in-
volved in an ambushed transition, but no such general rela-
tion exists: ambushed transitions and compound status
changes occur independently of each other.

E. Statistical evaluation

We examined each of the 26 assemblies to determine the
trigger type. First, we identify the contact status change that
triggers failure by examining the simulation data at the point
where the energy starts to grow. Then we inspected the
change in vkv and vthkvth at the trigger event. If vthkvth
becomes negative at the trigger event, and vkv converges to
vthkvth after a short time, then the trigger is classified as an
instability. An example is shown in Fig. 9. Simulations where
vċF�vkv�0 are also classified as an instability, because
the total stiffness is negative.

Next the possibility of null-mode failure must be consid-
ered. This is done by performing a singular value decompo-
sition on k and checking if the number of null modes in-
creases at ttrigger. Then the null mode must be consistent with
boundary and load conditions. If �vkv� / �vv� and
�vthkvth� / �vthvth� diverge from one another, the null mode
will trigger failure. Alternatively, one can check if
v0v / ��v0 v��=1.

There are four simulations that could not be classified in
this way. These systems display “ambushed transitions” and
were discussed in Sec. V C.
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FIG. 16. The most difficult example of failure to classify. The
triggering event is shown by a heavy vertical line. Other contact
status changes are shown by the short vertical arrows at the bottom
of the graph. At certain short periods of time, a null mode exists.
When this occurs, �vthkvth� / �vthvth� jumps to a value near 30.

(a) (b) (c)

FIG. 17. Compound status change. The compound status change
involves the two contacts in the upper left corner marked with the
black circles when they are sliding. The other sliding contacts are
marked with gray circles. The pictures are taken at t− ttrigger

=−0.04,−0.02,0 �from left to right�.
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It should be remarked that it was not clear how to classify
some of the simulations. In three of them, first a null mode is
present then a weak instability appears. These three simula-
tions were all classified as null mode, because the kinetic
energy increases significantly before the instability appears.

In our 26 assemblies, an ambushed transition occurs four
times, whereas the null-mode trigger was observed 14 times.
Instability is at the origin of failure in eight assemblies.
These results suggest that ambushed transitions are rather
rare, whereas the null-mode trigger frequently occurs in the
small systems.

One can also ask what kind of contact status changes
causes failure. In 13 of 26 assemblies, a contact begins to
slide �in one case two contacts become sliding�. In eight
other assemblies one or more contacts open when the trigger
occurs, and in another three assemblies one contact closes at
that time. In the two remaining assemblies two different con-
tact status changes happen at the same time: in one assembly
a sliding contact became nonsliding and another sliding con-
tact opened, and in the other assembly one open contact be-
came sliding while a different sliding contact opened. The
statistics suggest that at the origin of the trigger usually at
least one contact opens or starts to slide.

The trigger mechanisms can be related to one another as
shown in Fig. 18. All systems begin in the box labeled “sta-
bility” and finish in the ovals “null mode” or “instability”
when they fail. Most systems make the transition directly,
but a few pass by the box labeled “ambushed transition.” In
this case, the initial rise in kinetic energy is caused by an
oscillation provoked by a transition between two stable
states, as discussed in Sec. IV E. During the oscillation, a
null mode or instability appears which then causes the sys-
tem to fail. During the course of failure, null modes can
appear or disappear. The same figure also ranks the different
trigger mechanisms by their stability. The lower they appear,
the more unstable they are. Thus the upper region of the
figure is labeled vkv�0 and includes stability and ambushed
transition, for the packing is stable in these states. The lower
part of the figure is labeled vkv�0 and contains the oval
instability. The two parts of the figure are separated by a
horizontal dotted line representing the condition vkv=0
which is met in the oval null mode.

F. Trigger in larger systems

So far we considered trigger mechanisms in small pack-
ings with 16 particles, where the influence of the boundary
conditions is quite pronounced. In larger systems, the relative
occurrence of the trigger mechanisms might be different.
This section tackles this question and provides statistics of
the trigger mechanisms as a function of system size.

In Table II the number of systems that fail through the
different trigger mechanisms are listed for systems with N
=16, 32, and 64 particles. First, the number of instabilities
slightly decreases with increasing system size. This means
that the system passes through one of the other trigger
mechanisms before instability appears �see Fig. 18�. Second
we note that a lot of small systems with N=16 particles fail
through the null-mode trigger, but only one system with 32
particles shows this trigger mechanism. No larger system
was found to fail through the occurrence of a null mode. On
the other hand, the more complex trigger ambushed transi-
tion becomes more frequent when the system size is in-
creased. For N=32 particles systems, this is already the most
common trigger of failure. An argument for this turnaround
is that each contact has a smaller effect on the stiffness. Thus
the stiffness will not directly jump to a negative value
through a single contact status change. Instead, the stiffness
will decrease by small steps and often arrive in the “soft”
region, where deformations are large. Another argument for
the rising number of ambushed transitions is the increase in
vibrations. This increase has several origins. First we have
more vibration modes, as their number linearly increases
with system size. Second, the longer the wavelength of such
a vibration, the less it is damped and the longest wavelength
is comparable to the size of the system. Third we have much
more contact changes in the same time interval, so the time
for one vibration to be damped is much shorter before the
next status change appears.

The striking number of null-mode triggers in the small
systems is worth some closer examination. In Fig. 5 we
showed that, occasionally, a granular assembly can form a
square structure. This square structure has only circuits with
four grains, which explains why the rotation movement is
possible: in even circuits, all the grains can rotate in opposite
direction at their points of contact. If there is an uneven
circuit then at least one contact has to be sliding in order to
allow for this movement. This is because in odd circuits
there is at least one contact at which the grains have to move
in the same direction. This is only possible if it is a sliding
contact.

In Table III the number of circuits for systems with N
=16 and 32 particles are compared. Because there is only

FIG. 18. Relation of trigger mechanisms. All systems begin in
the box marked “stability.” Then they can fail through three differ-
ent ways indicated by the three arrows emerging from this box. The
remaining arrows indicate that transitions are sometimes possible
between different mechanisms. Though we did not observe the tran-
sition from the box “instability” to the “null-mode” oval, we do not
want to claim it is not possible. The dotted horizontal line indicates
vkv=0.

TABLE II. Number of systems that fail through the different
trigger mechanisms for different numbers of particles.

N=16 N=32 N=64

Ambushed 4 10 12

vkv=0 14 1 0

Instability �vkv�−vċF� 8 8 5

Total 26 19 17
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one null-mode trigger for N=32, we average over all trigger
mechanisms that can appear.

The average number of even circuits in N=32 particle
systems is 9.85, slightly lower than the number of odd cir-
cuits 10.42. This is opposite to the N=16 particles systems,
where the number of even circuits 3.77 is higher than the
number of odd circuits 3.35. We argue that the main differ-
ence between these two systems is not the system size, but
the tendency to form a square structure. While 4 by 4 �N
=16� is innately square, 4�2 by 4�2�N=32� is incompatible
with a square structure. This preference also explains, at least
partially, the high number of null-mode triggers in the N
=16 particles systems.

On the other hand, 64 particles assemblies can form a
square structure, but the probability of it being disrupted by
“defects” due to polydispersity is much higher. Accordingly,
we do not observe any null-mode failure for this system size.
Therefore boundary effects seem to be very important in the
N=16 particles assemblies.

A more thorough investigation of null-mode motions is
shown in Table IV, where the number of null modes is listed
as a function of system size, before, at, and after the time
when the trigger appears. The result shows a clear tendency:
the larger the system the less number of null modes de-
creases as the system increases. Before failure, there are al-
ready no more null modes for N=32, while at ttrigger we have
to take systems with at least N=64 particles to get rid of
them. During the failure, the number of null modes does not
vanish for any of the system sizes, but the trend toward fewer
null modes in large systems remains.

We furthermore tested if, in the smallest systems, the
number of null modes depends on the wall friction. When we
reran the N=16 simulations with friction at the walls we

found that failure is almost always accompanied by the ap-
pearance of a null mode. Therefore the observed null modes
seem to be a proper feature of the failure process and not due
to the absence of wall friction. However, those systems were
not subjected to the lengthy process of a detailed analysis of
the trigger mechanisms.

G. What drives failure?

We now discuss the kinetic energy in the N=16 particle
packings.

1. Exponential rise of the kinetic energy

During failure, the kinetic energy rises exponentially;
Ekin�e�t. To determine �, we took the points starting from
the time when Ekin=10Ekin�ttrigger� until t= ttrigger+1 or the
time when Ekin starts to decrease, whichever comes first. We
call this “total fit” because it covers the whole exponential
region. First we determined the exponent � directly from the
kinetic energy observed in the simulations and we obtain �

=0.32�0.07 f̂ / t̂ after averaging over all 26 seeds. Second, a
prediction of � can be obtained from Eq. �28�. This equation

yields a slightly higher value of �=0.33�0.09 f̂ / t̂. Rattlers
are one source of discrepancy, because they contribute to Ekin
in the simulations, but are excluded from the theory. Further-
more, the neglect of damping contributions redounds to
slightly higher values.

Toward the end of failure, the increase in kinetic energy is
much more regular. Therefore, we performed a second “best
fit” calculation of the exponent � in this region; we obtain

�=0.34�0.10 f̂ / t̂, which is very close to the value found by
fitting the whole curve. Hence, the mean exponent � is a
robust feature of failure.

2. Sources of energy

The mechanism that drives failure can be uncovered by
comparing the various terms in Eq. �28�. There are three

contributions to Ëkin that can dominate: the force imbalance,
the mechanical stiffness, or the geometric stiffness. These
contributions are proportional to vv, so they should be al-

most constant when divided by Ekin. The term vḟext is negli-
gible in the exponential region, because it is proportional to
v, so its contribution to Ekin evolves like �v� /Ekin→0. This
term does have a very special role at the onset of failure,
however. In all 26 cases we have examined, it is the main
source of energy at ttrigger, but is then quickly replaced by the
force imbalance. The damping, omitted from Eq. �28�, can-
not drive failure, since it always opposes motion.

The relative contributions to Ëkin averaged over all assem-
blies are given in Table V. The two rows correspond to the
two different methods of averaging discussed in the previous
subsection: the first row covers the whole exponential region,
whereas the second row applies to the latter part. The vari-
ance of each contribution is much larger in the first row than
in the second, which is a consequence of the fluctuations in
Figs. 10 and 14 at the onset of failure. On the contrary, the

TABLE III. Average number of circuits per system for systems
with N=16 and N=32 particles.

Circuit N=16 N=32

3 1.58 5.37

4 3.62 8.58

5 1.65 4.58

6 0.15 1.11

7 0.12 0.42

8 0 0.16

9 0 0.05

TABLE IV. Average number of nontrivial null-mode movements
per system for different system sizes at the times t= ttrigger−0.2 �be-
fore�, t= ttrigger, and t= ttrigger+0.2 �during the failure�.

N

Nontrivial null-mode movements

Before At ttrigger During failure

16 0.19 0.69 0.62

32 0.00 0.11 0.32

64 0.00 0.00 0.21
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latter, best fit part of the curve is very regular. This is a
general feature of all the simulations.

The table also shows that the force imbalance contributes

the largest part to Ëkin, followed by the contribution of the
geometric stiffness. The mechanical stiffness contribution is
small, on average. It can indeed, depending on the system, be
either positive or negative, driving or opposing failure. Thus
the two stiffnesses do not directly drive failure; instead, they
generate the force imbalance at the beginning of failure. Re-
call that a negative stiffness drives the system away from its
equilibrium position, the force imbalance will become larger
the more the system departs from its initial configuration.
This evolution will eventually come to an end when a new
stable state is experienced. This can be seen most clearly in
Fig. 10, where the exponential rise of the kinetic energy is
broken at t− ttrigger�0.7, and the mechanical stiffness begins
to fluctuate wildly, presumably due to vibrations. This pro-
cess is not related to the onset of failure, and we have there-
fore not investigated it in detail.

H. Failure staircase

In this paper, we define failure to occur at the first abrupt
change in the strain. However, this event may be simply the
first of a series. This possibility is suggested by the observa-
tion made at the end of the previous section: the system finds
a new stable state when the exponential rise in kinetic energy
is broken. The experiment could be continued until the sec-
ond stable state collapses, leading to a third stable state, and
so on. Finally the grains will form a monolayer and no fur-
ther failure events are possible. Thus the strain as a function
of time will be a staircase with the steps corresponding to the
events studied in this paper. This is reminiscent of the devil’s
staircase observed in packings of perfectly rigid, frictionless
grains �20�.

In the small packings considered here, the number of
steps in the staircase must be small, but in larger systems,
there could be many more, and the size of the steps could
become small. Strain-controlled simulations of rigid fric-
tional particles �21� suggest there are many stable states that
the system passes through as it deforms. If this were true,
what is called failure in large systems must be characterized
by something in addition to an instability: the next stable
state must be far away, so that a large change in the strain

occurs. A satisfactory evaluation of this speculation is be-
yond the scope of this paper, for the appearance of failure
depends on many factors: the preparation procedure, the
boundary conditions �stress- or strain-controlled�, the rate at
which the stress or strain is modified �if not quasistatic�, the
stiffness of the particles, etc. We therefore leave this point
open to further investigations.

VI. CONCLUSION

We have studied failure in numerical simulations of small
granular assemblies composed of 16 particles subjected to a
slowly increasing deviatoric stress under biaxial boundary
conditions. This system size is small enough to allow for a
detailed analysis of failure, but large enough to exhibit com-
plex behavior. 26 different configurations were studied and
we use stiffness matrix theory to understand the results.

We first studied the assemblies as the load was increased.
As in previous works �22–24�, we find a reduction in stiff-
ness together with an increasing number of sliding contacts.
The stiffness occasionally increases, but usually declines, al-
ways in a stepwise fashion, with sudden drops coinciding
with contact status changes. These status changes are accom-
panied by damped oscillations.

Our initial expectation for the cause of failure was based
on Ref. �9�: failure would be triggered by a contact status
change that leads to a negative stiffness or a null mode.
Negative stiffness means that an increment of force pushes
the system away from its equilibrium and a null mode is a
motion that does not change the contact forces at all. This
expectation was to a large degree confirmed. Failure could
always be associated with a contact status change that ini-
tiates the “trigger” of failure. Furthermore, 22 out of the 26
assemblies failed through a null mode or instability. The re-
maining four assemblies fail through a process that we call
ambushed transition: the initial rise in kinetic energy is
caused by oscillations provoked by a transition between two
stable states. During these oscillations, a second status
change occurs that leads to a null mode or to an instability,
and thus to failure.

To assess the significance of ambushed transitions, one
would have to study carefully the oscillations and their de-
pendence on numerous parameters: the rate of loading, the
stiffness of the particles, the damping, the size of the system,
the boundary conditions, and dimensionality �two or three
dimensions� all affect the vibrations and must be considered.
At present, little has been done to answer the question of
whether the vibrations in our ambushed transitions are a se-
rious issue in real systems.

The intent of this paper is to show that the stiffness matrix
can describe the quasistatic behavior of granular material on
the way to failure. Our results show that in the limit of suf-
ficiently stiff particles, inertia and dissipation become irrel-
evant. Furthermore the present study shows that the stiffness
matrix can explain to a large extent the mechanisms leading
to the collapse of granular assemblies.

In addition to the trigger of failure, we also examined the
process of failure itself by determining the various contribu-
tions to the kinetic energy. Before failure, energy is injected

TABLE V. Average theoretical exponential slope � and princi-
pal contributions to the second derivative of Ekin during failure. The
average has been carried out over 26 systems. The upper values are
obtained by fitting the whole exponential region �total fit� while the
bottom values stem from a fit to 15 consecutive points of almost
constant contributions �best fit�. Note that mv̇= fext+cF is the force
imbalance.

�

Contributions to Ëkin �in %�

v̇mv̇ vkv vċF Sum

Total fit 0.33�0.09 93�89 −25�98 27�19 95

Best fit 0.34�0.10 72�09 00�18 25�13 97
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by the external load and stored as potential energy in the
contacts by the mechanical stiffness. Just at failure, the me-
chanical stiffness is reduced and can no longer compensate
for the energy injected by the load, and the kinetic energy
begins to rise. Shortly thereafter, however, the dominate
source of energy is force disequilibrium.

The kinetic energy always rises exponentially during fail-
ure. Reference �9� expected that this would be so only when
failure was triggered by an instability. For a null mode, the
energy was expected to rise algebraically. A detailed analysis
shows that the geometric stiffness, which has not been an-
ticipated by Ref. �9�, then becomes significant at failure,
leading to the exponential rise of the energy. In agreement
with Ref. �7�, we find that the geometric stiffness is always
destabilizing. Hence failure involves always an exponentially
rising kinetic energy.

What will happen in large systems? It will certainly be-
come more difficult to identify the cause of failure: while in
small systems the contact status changes can be well sepa-
rated in time and thus the effect of each one can be ascer-
tained, in large systems the changes will be more frequent,
and also each one has a smaller effect. Thus the steps with
which the stiffness declines will decrease with system size,
and finally, the stiffness can be approximated by a continu-
ous function. This means that the mechanical stiffness cannot
suddenly become negative, or zero, as in many examples in
this paper. We expect therefore that it will decline until it is
canceled out by the geometric stiffness, and failure will oc-
cur. Just before this happens, however, the packing will be
very soft, and ambushed transitions will occur frequently.
Our observations of larger systems containing 64 particles
confirm these trends. Furthermore we anticipate that com-
pound status changes will become more frequent in large
systems. Therefore they might be more often involved in the
occurrence of failure in large systems.

We did not find any precursors to failure in small systems.
This might be due to the limited number of possible contact
status changes and the large resulting change in stiffness.
However, precursors might be frequently encountered in
large systems. We suspect that they look like failure itself but
limited to localized regions. Then, little by little, the mean
size of these regions may become bigger and bigger, until
they merge and spread across the entire system. Other inves-
tigations are in favor of this speculation, as they show that
criticality �i.e., instability� is restricted to regions where
shear bands with unique characteristics develop �25,26�.
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APPENDIX A: INVERSION OF THE STIFFNESS MATRIX

As discussed in Sec. III D 3, the stiffness matrix is always
singular. Nevertheless, it is possible to construct a matrix that

acts as its inverse. To do so, we decompose the matrix into a
diagonal matrix s and two orthonormal matrices u and w,

uswT = k . �A1�

This reduction is called singular value decomposition and is
always possible, with s containing the �non-negative� real
singular values. Note that k is not symmetric, so it can in
general not be diagonalized over R �some of the eigenvalues
would be complex�. To define a matrix that acts as an inverse
of k, we first define

s̃ij ª �1/sii if i = j and sii � 0,

0 otherwise.
� �A2�

Then the “inverse” of the stiffness matrix is defined as

k̃ ª ws̃uT. �A3�

Note that, by definition, the kernel dimensions of k and of k̃
are identical.

APPENDIX B: THE GEOMETRIC STIFFNESS

We will now show an argument why the geometric stiff-
ness contribution vċF constitutes an instability for circular
grains. We start writing the configuration matrix ci� �10� for
contact � of grain i:

ci� = 
n�� t��

0 1
� . �B1�

Note that we are in two dimensions and the third line denotes
the rotational part of the mapping from the contact �force�
space to the particle �force� space. The derivative of ci�
quantifies the change in contact direction n��. We will limit
the discussion to only one contact, but the generalization is
straightforward. Introducing the particle center distance X� ij

=x�i−x� j, its length Xij = �X� ij�, and its derivative V� ij =v� i−v� j, we
get

n�̇� =
d

dt

X� ij

Xij
=

V� ij

Xij
−

n���n�� · V� ij�
Xij

=
t���t�� · V� ij�

Xij
. �B2�

t�̇� is then obtained from the relation

t�̇� = e�z � n�̇� = − n��

�t�� · V� ij�
Xij

, �B3�

where e�z is the unit vector along z and orthogonal to both n�
and t�. The quantity in brackets is the tangential velocity Vij

t .
The derivative of ci� is linear in this quantity,

ċi� =
Vij

t

Xij

t�� − n��

0 0
� . �B4�

The contribution to the geometric stiffness of particle i at
contact � is

vi
Tċi�F� =

Vij
t

Xij
�vi

tF�
n − vi

nF�
t � . �B5�

Now we include the contribution from particle j. Noting that
cj�=−ci� and defining ṽªvi+vj, we get
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ṽTċ�F� =
Vij

t

Xij
�Vij

t F�
n − Vij

n F�
t � . �B6�

Xij and F�
n are always positive, the other quantities can be

either positive or negative. Thus the second term can be ei-
ther negative or positive and averaging over a large number
of contacts leads to many cancellations. On the other hand,
the first term is always positive. Hence vċF�0 for assem-
blies of circular grains.

For stiff circular grains, the geometric stiffness is negli-
gible in comparison to the mechanical part. The first is pro-
portional to the average contact force, whereas the second
depends on the contact stiffness. A rough estimation for their
ratio is

vTċF

vTkv
�

v
v
d

F

v2kn
�

1

d

 fext

d

L
�

kn
=

fext

knL
� 10−3. �B7�

Here, d=2r is the average grain diameter and L�4d is the
length of the simulation box. The average contact force is
denoted by F. This equation holds when there are no sliding
contacts. The ratio can become significantly larger when
their number increases. At failure, the geometric stiffness
vċF can even surpass the mechanical contribution.

APPENDIX C: CORRECTIONS TO c

Calculating the force balance in Eq. �27� or Eq. �28� with
the c matrix, given for one contact in Eq. �B1�, leads to a
large force imbalance even when the simulation is quasi-
static. This is because the configuration matrix ci� given
above is an approximation and the entries in the last line
have to be corrected for the particle overlap. When we take it
into account, we get for the second entry

1 −
Dn

ri + rj
=

Xij

ri + rj
. �C1�

The overlap distance Dn and the particle radii ri ,rj had been
introduced in Eq. �2�. Taking the derivative of Eq. �C1�, the
correction to Eq. �B4� is

ċi� =
Vij

t

Xij�t�� − n��

0
Xij

Vij
t

Vij
n

ri + rj
	 . �C2�

It turns out that this correction is not crucial for the value of
vċF because its contribution is roughly 5%.

APPENDIX D: NULL MODES

In Sec. III D 1 we mentioned that a vanishing mechanical
stiffness associated with the occurrence of a null mode can
trigger the onset of failure. Here, we will present a very
simplified model that gives some insight into its contribution
to the kinetic energy. The assumption kv=0 means that
larger external forces will not be balanced by the contact
forces anymore. Then, the imbalance leads to a change in
velocity of the particles induced by the change in the exter-
nal forces �see Eq. �15��:

mv̈ = ḟext. �D1�

Here, we consider the mass of the granular assembly and the
external force acting on it to be scalar quantities because the
latter will set the forces acting on the particles. Presuming
that the right side is constant, integrating twice leads to

mv =
1

2
ḟextt

2 + mv̇�t0�t + mv0. �D2�

Just before the null mode occurs, v̇ will be small, so we can
neglect the contribution of the second term. With this sim-
plification the kinetic energy writes

Ekin =
1

2
mv2 =

1

8
t4 ḟext

2

m
+

1

2
t2 ḟextv0 + Ekin,0. �D3�

Please note that v is proportional to ḟext, so Ekin� ḟext
2

+O� ḟext�. We checked this time dependence in one simula-

tion and we found the scaling with ḟext and m predicted in
Eq. �D3�.
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