
Loose Capacity-Constrained Representatives for the Qualitative
Visual Analysis in Molecular Dynamics

Steffen Frey†, Thomas Schlömer‡, Sebastian Grottel†, Carsten Dachsbacher§, Oliver Deussen‡ and Thomas Ertl†
†Visualization Research Center Universität Stuttgart (VISUS) ‡University of Konstanz §Karlsruhe Institute of Technology

(a) Path lines of 81672
molecules over 600 time steps

(b) Grouped molecules for
a single time step

(c) LCCVD representatives for
the groups in (b)

(d) Path lines of the representatives
for all time steps

Figure 1: Showing all points of a large and time-dependent data set at once usually results in expensive (non-interactive) rendering, high storage
requirement, and heavy occlusion. LCCVD allows to drastically reduce the amount of points very quickly using a GPU-friendly algorithm which
preserves the basic structure of the data set.

ABSTRACT

Molecular dynamics is a widely used simulation technique to in-
vestigate material properties and structural changes under external
forces. The availability of more powerful clusters and algorithms
continues to increase the spatial and temporal extents of the simula-
tion domain. This poses a particular challenge for the visualization
of the underlying processes which might consist of millions of par-
ticles and thousands of time steps. Some application domains have
developed special visual metaphors to only represent the relevant
information of such data sets but these approaches typically require
detailed domain knowledge that might not always be available or
applicable.

We propose a general technique that replaces the huge amount of
simulated particles by a smaller set of representatives that are used
for the visualization instead. The representatives capture the char-
acteristics of the underlying particle density and exhibit coherency
over time. We introduce loose capacity-constrained Voronoi dia-
grams for the generation of these representatives by means of a
GPU-friendly, parallel algorithm. This way we achieve visualiza-
tions that reflect the particle distribution and geometric structure of
the original data very faithfully. We evaluate our approach using
real-world data sets from the application domains of material sci-
ence, thermodynamics and dynamical systems theory.

Keywords: particle-based visualization, molecular dynamics,
clustering, time-dependent data.

Index Terms: Computer Graphics [I.3.1]: Parallel processing
Computer Graphics [I.3.8]: Applications

1 INTRODUCTION

Many applications in visualization and simulation are based on par-
ticles. Molecular dynamics (MD) is a prominent example: it uses
particles to represent individual atoms or molecules, and models
their interaction with each other. This allows to study effects on
the micro scale, such as thermodynamical behavior of the nucle-
ation during phase transition, or the atomistic behavior of solid ma-

terial under external forces, e.g. deformation and destruction of a
block of metal during laser ablation. A realistic simulation typi-
cally requires a huge amount of particles and many time steps to
fully capture the underlying processes. In such a case, data size
quickly becomes problematic for visualization: a huge number of
particles, often rendered as spheres, can result in high occlusion
and poor perceptibility due to an overloaded image. While the sim-
ulation and a quantitative analysis may require the full data set, a
qualitative visual evaluation usually benefits from a clearer repre-
sentation using a reduced number of graphical primitives. This is
especially the case for the visual analysis of time-dependent data.
As a consequence, some application domains have created special
visual metaphors (e.g. the cartoon representation for proteins [23])
which abstracts from the individual atoms. The extraction of rel-
evant features, however, typically requires detailed knowledge of
domain experts, and may require manual parameter tuning.

In order to generate meaningful visualizations of arbitrary and
large time-dependent particle data sets, we propose to generate a
set of representatives from such large collections of particles merely
by analyzing the data set itself. Our representatives reproduce the
density distribution of the underlying input particles very faithfully
and thus the characteristic structure of the data. Our approach
utilizes loose capacity constraints based on capacity-constrained
Voronoi diagrams (CCVDs) of the finite space constituted by the
particles. Loosening the capacity constraint allows the centroids of
the Voronoi diagrams to adapt well to the incoming data set.

In particular, our paper makes the following contributions:
• Loose capacity-constrained Voronoi diagrams (LCCVD)

which allow a controllable assignment of particles to repre-
sentatives.

• A massively parallel algorithm for computing the time critical
operations of CCVDs and LCCVDs on the GPU.

• A quality metric which captures how well particles are cov-
ered by representatives.

The remainder of this paper is structured as follows: In Sec. 2
we discuss related work and CCVDs. Sec. 3 gives a description of
our LCCVD-based method. Sec. 4 explains the parallel algorithm
for the performance-critical part of our method. Sec. 5 introduces
the quality metric, which is used in Sec. 6 together with qualitative
visual analysis to demonstrate the effectiveness of our approach.

2 RELATED WORK

Capacity-Constrained Voronoi Diagrams Capacity-constrained
Voronoi diagrams, briefly CCVDs, have been described by Au-
renhammer et al. [2]. CCVDs are Voronoi diagrams where each
region’s generator point—typically called a site—has a predeter-
mined capacity which can be understood as the area of a site’s
Voronoi region weighted with an underlying density function. In
discrete spaces, the density function can be represented by a finite
set of points which is analogue to the set of particles in our appli-
cation scenario. An algorithm for the computation of CCVDs has
been presented by Balzer et al. [4, 5] who were especially inter-
ested in the case where each site coincides with the centroid of its
Voronoi region (centroidal CCVD), and where each site has equal
capacity. For discrete spaces, this means that each site is assigned
the same number of points from the underlying space. To maintain
this strict capacity constraint, Balzer et al. presented an iterative op-
timization technique which swaps the assignment of points to sites
based on a specified distance function, such that the sum of squared
distances from sites to their points converges to a local minimum.
This swapping operation is performed by sequentially processing
each combination of site pairs which, however, yields an algorithm
of quadratic complexity.

Clustering Algorithms Our approach bears similarities to some
methods from the field of clustering although the goals of both ap-
proaches differ significantly. Applied to our context of spatial point
data sets, clustering means the segmentation of a set of points into
subsets (clusters) according to proximity. Usually, there are no
guaranteed constraints restricting cluster sizes so that an arbitrary
number of points could be represented by a single centroid. This
means that the original point data set is not guaranteed to be faith-
fully represented by these centroids at all. For a data set consisting
of groups with varying numbers of points (similar to Fig. 2), a stan-
dard clustering would detect one cluster for each of these groups
and each cluster would simply be represented by its centroid. This
way, information about size and shape of the point groups would be
lost.

A comprehensive overview on clustering techniques is given by
Kolatch [19]. The clustering algorithm most related to our proposed
technique is the widely used k-means [13] algorithm. Starting with
an initial seed of cluster centroids (sites), k-means iteratively as-
signs points to its nearest cluster centroid, and then computes a
new centroid for each cluster by computing the mean position of
all points. The results strongly depend on the initial seeds. More
importantly, the number of points assigned to each cluster may dif-
fer significantly leading to centroid configurations that do not rep-
resent the underlying point density appropriately (Fig.2(a)). There
have been attempts to balance k-means [6, 7, 9], but the imposed
restrictions either cannot be guaranteed or cannot be chosen freely.
Preliminary fixing the number of sites, however, at least determines
the average number of points assigned to each site.

Clutter Reduction Techniques Our method uses a set of rep-
resentatives replacing the original point data set and can thus be
considered a clutter reduction technique in the sense of Ellis and
Dix [14]. Utilizing their taxonomy, our method can be catego-
rized as an appearance-oriented clustering technique where clus-
tering describes “a different representation of the group of individ-
ual lines or points.” An alternative technique is based on statistical
sampling [11] where representatives are simply picked randomly
among the full set of points. We will compare our results to this
approach in the evaluation section. In contrast, more general reduc-
tion techniques [18, 24] or approaches aiming at surface reconstruc-
tion [12, 26] are not geared towards density function adaptation.

Molecular Dynamics Visualization There exists a great variety
of visualization tools for particle data sets which differ in focus, per-

formance, and features. The most wide-spread tools for MD visu-
alization are Chimera [10], PyMOL [22], and VMD [27]. Generic
visualization packages, such as AVS [3] or Amira [1], also pro-
vide special modules for molecular visualization. However, these
tools work in the context of bio-chemistry and often lack support
for direct particle-based visualization (e.g. with spheres) beyond
several tens of thousands of atoms. For larger data sets, they apply
visual metaphors from the application domain [23] with less graph-
ical primitives for faster rendering and better perceptibility.

Beyond the context of bio-chemistry, visualizations have to re-
vert to particle-based rendering, which has been recently optimized
for data sets with opaque spherical particles up to tens of millions of
particles [16], and for transparent data sets from astronomy even up
to billions of particles using level-of-detail techniques [15]. How-
ever, these visualizations still suffer from cluttered images and lack
feasible aid in analyzing time-dependent data. This is usually reme-
died by applying feature extraction and tracking [28] typically tai-
lored to very specific applications, such as schematic views for nu-
cleation processes [17], mixing layers in hydrodynamics [21], or
extraction and visualization of solvent molecules moving paths in
proximity of active sizes of proteins [8]. Thus, they cannot be ap-
plied directly to arbitrary particle data.

3 LCCVD
Before introducing our method, consider the case shown in Fig. 2
which demonstrates the shortcomings of existing methods for our
application scenario. Here, an inhomogeneous set of particles
(points from hereon) is to be represented by a smaller set of repre-
sentatives (sites). Applying strict capacity constraints as proposed
by Balzer et al. [4, 5] may result in sites being located inappropri-
ately in-between accumulations of points, making them poor rep-
resentatives for their sets of associated points. K-means clustering
does not share this problem but instead does not allow to draw any
conclusions about the underlying point density. This is emphasized
by the closeup images where the top groups of points are repre-
sented by either too few or too many sites.

We propose loose capacity-constrained Voronoi diagrams (LC-
CVD). Loose capacity constraints mean that the number of points
assigned to each site is not fixed, but may reside within an inter-
val [cmin,cmax]. In the following, this is also given in terms of the
capacity looseness l which translates to the interval by cmin|max =

max(m · (1± l),1), m denoting the average number of points per
site. A typical value is l = 0.2 such that the capacity interval allows
a 20% deviation from m. As such, LCCVD can be seen as a hy-
brid between the CCVD-based method and the k-means approach,
allowing the adjustment of the constraints.

In the remainder of this section, we discuss the basic approach
behind LCCVD (see Fig. 3). First, we determine an initial assign-
ment of points to sites (Sec. 3.1). We then exchange points between
sites until convergence (Sec. 3.2). When it is acceptable to spend
more time on the computation to achieve better results, we perform
a step called temporary cmin relaxation (Sec. 3.3) which temporarily
ignores the minimum constraint to allow an even better adaptation
of sites to points (Fig. 2(d)). This is followed by the next phase of
point exchange. For time-dependent data sets, the whole procedure
is performed for each time step, using the results from the previous
time step as initialization to exploit coherency.

3.1 Site Initialization
We use the input point set to determine the initial site positions.
For static data sets (and for the first step of a time-dependent se-
ries), sites are initially placed at the locations of randomly chosen
points. To fulfill its minimum capacity constraint, each site then
searches for the cmin nearest points that have not yet been assigned
to another site. The remaining points are then assigned to the clos-
est site which has not yet reached its maximum capacity constraint

21

2

1

(a) No Constraints (K-Means)
l = ∞

21

(b) Strict Constraints (CCVD)
l = 0

21

(c) Loose Constraints (LCCVD)
l = 0.15

21

(d) Loose Constraints (LCCVD)
l = 0.15 and cmin-relaxation

Figure 2: Two-dimensional point dataset represented by sites using LCCVD. Sites are depicted by black circles while points are shown as colored
dots. Different colors depict that points belong to different sites.

cmax. The necessary nearest-neighbor queries are efficiently per-
formed using a kD-tree, removing points which have been assigned
to sites, or sites which have reached cmax, respectively. For subse-
quent steps of a time-dependent data set, the assignments of points
to sites are passed on from the previous time step, and sites are
updated using the mean position of the newly assigned points.

3.2 Point Exchange using Loose Capacity Constraints
During the point exchange phase, every site exchanges points with
all other sites until convergence. In the strict CCVD-based method
this is accomplished by pairwise testing sites for potential point
swaps: two points are swapped between a pair of sites only if the
sum of squared distances between points and sites decreases. A
site is relocated to the new mean position of its points at the end
of each swapping process. Using our loose capacity constraints, a
point can also simply be re-assigned without substituting it with an-
other point as long as the constraint interval [cmin,cmax] of a site is
not violated. This way we allow points to “switch” to better sites
where the strict CCVD-method would have intervened. This user-
defined capacity interval allows to span the whole range from the
pure distance-based k-means approach (cmin = 0 and cmax = ∞) to
the strict capacity-constrained approach (cmin = cmax).

The point exchange phase is by far the most expensive part of
LCCVD. To this end we introduce an optimized parallel algorithm
suitable for GPUs in Sec. 4. We discuss which pairs of sites to con-
sider for the swapping operations (Sec. 4.1 & 4.2), and how to de-
termine point swapping pairs (Sec. 4.3) such that the requirements
of an efficient GPU implementation are met.

Site Initialization (Sec. 3.1) Point Exchange (Sec. 3.2 & 4)

Constraint Relaxation (Sec 3.3)
Exchange Status?

Else

Subsequent
Time Step?

Convergence
Criterium Met

Yes No Site Relaxation?

Yes

No

Update Points (Sec. 3.1)

Temp. c Relaxation (Sec. 3.3)min

Figure 3: Computation steps and control flow of LCCVD.

Note that data sets from MD simulations usually employ peri-
odic boundary conditions which have to be considered. LCCVD
handles periodic boundary conditions when calculating distances
or centroids by virtually shifting the data set’s bounding box such
that the currently considered particle is in its center. Subsequent
calculations can then be done in a non-periodic manner.

3.3 Temporary Minimum Constraint Relaxation
One problem from CCVD is partly inherited by our LCCVD ap-
proach: sites may get positioned between adjacent point clouds
(Fig. 2(c)), making this site a bad representative. This is due to the
minimum constraint cmin which can prevent that points are removed
from sites between two such clouds. Points cannot be swapped to
another site either, since other points are even further away. We
denote these problematic sites bad sites in the following.

We found that temporarily relaxing the minimum constraint for
bad sites largely resolves this problem which is why we interpose
an optional correction step after each exchange phase (cf. Fig. 3).
During this correction step, we perform the following substeps:

1. Identify bad sites: A site s is considered a bad site when it is
at its minimum capacity and its farthest point p is much closer
to any other site sother: |sother− p|/|s− p| < z. In our exper-
iments across all our data sets, z = 0.85 proved to reliably
detect bad sites with only a small amount of false positives.

2. Assign points of bad site to closest sites: Release points to
closer sites while constantly updating the site position (tem-
porarily violating cmin for the bad site). After this step, the
bad site only represents the points it is closest to.

3. Bad site takes on points from nearby sites: Identify the
nearest sites and insert them into a priority queue based on
their distance to the bad site. Take the first site from the queue
and—as long as its minimum constraint is not violated—
reassign points from it to the bad site in the order of prox-
imity. Proceed with the next site from the queue until the bad
site has reached its minimum capacity.

We initiate this correction step after each exchange phase (cf.
Fig. 3), but no more than five times per time step (this proved to
be a good tradeoff between speed and quality). This avoids infinite
loops since it is not always possible to resolve a bad site without

Swapping On GPU (Sec. 4.3)Weight and Group Sites (Sec. 4.1) Create Network (Sec. 4.2)

0

1

Pass
0 1 2 pn Streaming Multiprocessor

Core

...

...

...

...

...

2...

3...

31

...

...

......

Thread

...

...

...
.........

GPU

......

Core

Figure 4: Overview on the LCCVD parallel point exchange. Selected
connections between the three steps are indicated by dashed lines.

permanently violating cmin. Overall, the temporary relaxation of
the minimum constraint allows to reduce the number of bad sites
without losing the flexibility of loose capacity constraints.

4 LCCVD PARALLEL POINT EXCHANGE

Exchanging points between sites is the computationally most de-
manding part of our method and thus its parallelization is crucial for
the overall performance. One key observation is that point swaps
occur primarily between neighboring sites. This allows us to restrict
swapping operations to groups of adjacent sites (Sec. 4.1). These
groups can then be processed in parallel by different multiproces-
sors on a GPU (cf. Fig. 4). To ensure that close sites which do not
belong to the same group also get the chance to exchange points,
we regroup sites over time—still grouping nearby sites—such that
all sites are able to at least once exchange points with all sites in
their proximity. Swapping with more distant sites occurs indirectly
by successively handing over points from site to site. However, not
only full site groups, but also the swapping of points between sites
within a site group is parallelized in order to fully utilize a GPU
(Sec. 4.2). For this purpose, we employ a sorting network that de-
termines the optimal ordering of swapping operations between sites
which are then processed by separate GPU threads on a streaming
multiprocessor (Sec. 4.3).

4.1 Partitioning Sites into Groups
To determine groups of adjacent sites we enumerate the sites such
that the enumeration indices reflect their spatial proximity. For this
purpose, we employ a kD-tree based on the set of input points P,
because it roughly reflects the points spatial distribution: in densely
populated regions, kD-tree nodes (i.e. the centroids of their bound-
ing boxes) are close, in less dense regions they are farther apart. To
determine the index i of a site s ∈ S, we search for its enclosing kD-
tree node, by traversing the tree (starting from the root with i = 0):
whenever we descend to the left child, i remains unchanged, when-
ever we descend to the right child, i is increased by P ·2−h where h
denotes the level of the tree (h = 0 for the root node). The traversal
is stopped as soon as we reach a node that contains m = |P|/|S|
points or less. Subsequently, sites are sorted according to i using
the in-place GPU radix sorting algorithm of Satish et al. [25] and
finally partitioned into groups of consecutive sites.

In order to avoid that sites always belong to the same group, we
displace the kD-tree splitting planes in each iteration by applying
an offset of a certain direction and magnitude. For the displace-
ment directions, we alternate between the main axial directions and
the diagonal directions, while the displacement magnitude for each
site—according to our experiments—should be roughly half the ex-
tent of the site group’s bounding box (as determined without any
displacements). Since it is impractical to displace the whole tree
with all different group extents along all directions, we consolidate
similar displacement magnitudes.

for n in sortingNetworkPasses :
(site0 , s i te1) = swappingNetwork(n , threadId)
for point0 , point1 in sitePoints0 , si tePoints1 :

/ / se lect point swapping candidates
weight0 = dis t (point0 , s i te0) − dis t (point0 , s i te1)
weight1 = dis t (point1 , s i te1) − dis t (point1 , s i te0)
update ((maxWeight0, maxPoint0) , (weight0 , point0))
update ((maxWeight1, maxPoint1) , (weight1 , point1))
/ / take free s lo t s instead of bad candidates
i f maxWeight0 < 0 && freeSlotAvailable (si tePoints0) :

maxWeight0 = 0
point0 = getFreeSlot (si tePoints0)

end i f
i f maxWeight1 < 0 && freeSlotAvailable (si tePoints1) :

maxWeight1 = 0
point1 = getFreeSlot (si tePoints1)

end i f
/ / swap points i f swapping condition is met
i f maxWeight0 + maxWeight1 > 0:

swap maxPoint0 and maxPoint1
maxWeight0 = maxWeight1 = −∞

update s i t e positions
else

f i l l free s lo t s ahead of free s lo t index when required
end i f

end for
(synchronize threads)

end for

Listing 1: Pseudo-code for the LCCVD swapping kernel. The dis-
tance of a free slot to any site is defined to be zero.

4.2 Swapping Network Construction
While site groups are distributed over the streaming multiproces-
sors (SM) of a GPU, the swapping operations between sites (within
a group) are executed in parallel by each SM. Prior to the swapping
algorithm, we create a swapping network that determines which
pairs of sites should be processed by a single GPU thread. The net-
work schedules which site pairs are to be processed in parallel, and
which are to be processed successively. It needs to ensure that no
site is processed in more than one thread at a time to avoid read-
write conflicts (or expensive atomic operations). Maximizing the
utilization of threads by distributing pairs as evenly as possible is
yet another goal. In principle all pairs of sites would have to be
considered, but we can significantly prune the set of pairs before-
hand by excluding sites which are guaranteed not to swap points
according to the following criteria:

1. Bounding Sphere: The distance between two sites is larger
than the sum of the distances to their farthermost points.

2. Stability: Both sites have not exchanged points for N itera-
tions where N denotes the number of displacement directions
times the number of displacement magnitude groups.

The bounding sphere criterion is particularly beneficial when sites
are roughly at their final position but not yet stable. The stability
criterion has a strong impact during the final steps of the optimiza-
tion when many sites have already reached stable positions.

4.3 Swapping Algorithm
In our GPU implementation, points are stored in an array with cmax
elements or slots. Slots are placeholders for points from the data
set such that each site can have at most cmax points. Some of these
slots are free slots in the case that the number of points is smaller
than cmax. Free slots can be used to re-assign a point to another site
without the requirement to take another point in return. In order to
determine which points to swap between a pair of sites, the original

CCVD-based method [4, 5] uses a max-heap data structure. Since
this is impractical for GPU implementations, our algorithm only
keeps track of the point with the largest squared distance to its site.
Listing 1 gives pseudo-code for our swapping kernel.

Initially, all points are located at the beginning of the array while
free slots are located at the end. The free slot index indicates the
slot from which no points are stored in the remaining array. A site
is able to trade free slots for points as long as the free slot index does
not point to the end of the array. When a point is exchanged for a
free slot, the free slot is stored in the former location of the point.
These free slots form holes and are fixed the next time the algorithm
iterates over the array: either the free slot forming the hole is used
to store a point of another site, or it is swapped internally with the
point just before the current free slot index. The free slot index is
subsequently decremented until it marks the first free slot.

5 POINT DISTRIBUTION PRESERVATION QUALITY METRIC

For the numerical comparison between different methods for gener-
ating representatives, we propose a metric that captures the quality
of the representation of a set of points P by a set of sites S. It is in-
dependent of any method-specific information and operates solely
on the sets P and S, i.e. without additional knowledge (e.g. as-
signments of points to sites). As opposed to conventional density
estimation and subsequent distance calculation, it is simple and fast
to compute, and directly determines the points that each site covers.
This is critical for analysis and code debugging purposes.

One basic assumption is that the set of sites offers a good rep-
resentation for the set of points if their distribution proportionally
follows the distribution of the points, i.e. each site should roughly
represent an equal amount of points. Since |S| sites have to repre-
sent |P| points, each site should represent an average m = |P|/|S|
points. This is also reasonable from the user’s point of view who
expects each representative to be of equal importance. Another as-
sumption is that sites are good representatives for points in their
proximity, and less so for more distant points. These assumptions
lead to the following metric: a site only covers (i.e. represents) a
point if it is amongst its m-nearest points. How well it is covered is
determined by means of its distance to the site. If it is inside a cer-
tain radius of importance, it counts as fully covered. Beyond this
radius, the influence of the site decreases quadratically, such that
points that are farther away are only slightly covered by the site.

Note that a metric based on these two assumptions alone is
punishing inappropriate site positions—either directly or indirectly.
When a certain subset of points is represented by too few sites (as
with the k-means example in Fig. 2(a)), the coverage value m will
lead to some points not being covered at all. On the other hand,
when a certain subset of points is represented by too many sites, the
punishment occurs indirectly as there will be a severe lack of sites
in other regions. In addition, bad sites (Sec. 3.3, Fig. 2(b) and (c))
are only able to exert a small influence on their surrounding points
as most of these will be located outside the site’s radius.

We can subsume these assumptions from the perspective of a
single point p by computing its coverage quality qp as:

qp = min

(
∑

s∈N(p,S)

1

(|p− s|/r)2 , 1

)
, with r = v 3

√
1

4
√

2|S|
in 3D.

N(p,S) denotes all sites which have p as one of their m nearest
points. The radius r is derived from the solution of circle pack-
ing [20] such that each site covers as much space as possible with-
out yielding overlapping spheres. In order to approximately adjust
to the bounding box domain, r is scaled with the average side length
v of the bounding box volume enclosing all points.

The total quality q is given by a normalized sum:

q =
1
|P| ∑

p∈|P|
qp.

Sites m Comp. Time Norm. Radius α

Constant [5] our [5] our
1024 4096 237.9s 129.7s 0.7628 0.7543
2048 4096 451.9s 152.3s 0.7481 0.7451
4096 4096 991.1s 175.6s 0.7470 0.7454
8192 4096 2413.3s 241.6s 0.7455 0.7588

16384 4096 6361.8s 525.7s 0.7367 0.7382
8192 8192 8319.1s 1258.0s 0.7576 0.7588

24576 1500 6720.4s 125.3s 0.7072 0.7035

Sites m Comp. Time Cap. Error δc
ρ [5] our [5] our

1024 4096 214.6s 231.3s 0.00349 0.00346
2048 4096 421.9s 235.2s 0.00291 0.00318
4096 4096 876.6s 338.4s 0.00263 0.00304
8192 4096 1927.0s 542.4s 0.00245 0.00259

16384 4096 4911.7s 857.3s 0.00239 0.00246
8192 8192 6543.7s 2836.5s 0.00204 0.00220

24576 1500 2734.5s 158.7s 0.00333 0.00327

Table 1: Computation times and quality metrics for varying numbers
of sites and points per site m using a constant and a non-constant
two-dimensional density function. All results were obtained by av-
eraging runs from 10 sets of sites obtained via rejection sampling.

Note that qp ranges from 0 (unrepresented by surrounding sites)
to 1 (fully covered). A site completely covers a point in its radius r,
while its influence quadratically decreases beyond that. Full cover-
age of a point may still be achieved through other adjacent sites.

6 EVALUATION

This section presents the evaluation of our approach in different sce-
narios. First, we compare the performance of our method for com-
puting strict CCVDs to the original CPU-based method by Balzer
et al. [4, 5] to show the advantages of our parallel algorithm. We
then present LCCVD results, including comments from application
domain experts, for real-world data sets using 3D molecular dy-
namics simulation and flow data. All measurements were done us-
ing a NVIDIA GTX 480 and an Intel Core i7. The partitioning
of sites into groups and the swapping algorithm were implemented
in CUDA using a block size of 128 threads and a group size of 128
sites. The remaining computational steps of LCCVD were executed
on the CPU using OpenMP.

6.1 CCVD of 2D Point Distributions

In their original work, Balzer et al. [5] generated initial 2D
point data sets by rejection sampling a given density function.
One density function was simply a constant, while an exemplary
non-constant density function was chosen as ρ = e(−20x2−20y2) +
0.2sin2(πx)sin2(πy). Table 1 lists timings and quality results for
the quality metrics normalized radius α [20] which should be
around 0.75, and capacity error δc [5] which should be close to
zero. Both metrics underline that our improved parallel algorithm
does not sacrifice the quality of the resulting site distributions.

As expected, our parallel approach becomes more and more ben-
eficial as the number of sites increases. It does not slow down as
drastically as the original implementation for large numbers of sites.
This is mainly due to the fact that the higher utilization of the GPU
cushions the increased computation costs (see Sec. 6.2 for a detailed
discussion). Even greater impact can be observed for the number
of points per site m: for small m the parallel nature of our approach
shows its strength much more clearly and we achieve timings which
are faster by an order of magnitude. We attribute this dependency
on m to the less sophisticated selection of point swapping candi-
dates which is unavoidable to meet the requirements of an efficient
GPU implementation as described in Sec. 4.3.

(a) Sites path lines l = 0.2, m = 8192, t = (0,400)

(b) Points, t = 90 (c) Sites, m = 512,
l = 0.2, t = 90

(d) Sites, m = 512,
random, t = 90

Figure 5: Arnold-Beltrami-Childress flow. (a) Data set represented
by a set of sites over numerous time steps. (b) Full data set for a
single time step t = 90. (c) Reduced version for t = 90 sites which
represents m = 512 points on average. It fully preserves the basic
structure and allows better insight into the data set, e.g. the point
density at the left is much lower than in the middle or on the right.
(d) Reduced version based on random sampling exhibits an irregular
structure that does not preserve densities and results in the loss of
smaller features (e.g. thin structures on the bottom left and top right
indicated by arrows).

(a) Points path lines,
t = (0,400)

(b) Sites,
l = 0.2, m = 125,

t = 400

(c) Sites path lines,
l = 0.2, m = 125,

t = (0,400)

Figure 6: Laser ablation from a block of solid aluminum. (a) Extract-
ing path lines using the full data set. (b) Reduced version for a single
time step. (c) Extracting path lines from the reduced version. In (c)
the structure of the molecule movement as well as the amount of
molecules being expelled from the block is visualized more clearly.

6.2 LCCVD of 3D Molecular Dynamics Data Sets

In the application domains of thermodynamics, physics, and mate-
rial science a direct, particle-based visualization is commonly used
to visualize the individual time steps of a simulation. Typically, ev-
ery particle representing a molecule or atom is rendered as a small
sphere. If time series data needs to be visualized, either anima-
tions are used to depict the evolution of particles over time, or
path lines are rendered for small subsets of particles. Using a set
of representatives (sites) instead of the original particles (points)
not only reduces both storage requirements and rendering time, but
also improves comprehensibility. We demonstrate the effective-
ness of our approach by using a data set from particle tracing for
vector field visualization—Arnold-Beltrami-Childress (ABC, with
A =
√

3, B =
√

2, C = 1 and T = −8) shown in Fig. 5—and by
means of three molecular simulation data sets: laser ablation from
a block of solid aluminum (Fig. 6), compressed argon surrounded
by vacuum (Fig. 7), and two colliding liquid droplets (methane and
ethane) (Fig. 8). Particle numbers and the amount of time steps per
data set are listed in Table 2.

Visualizing sites instead of points has numerous benefits apart
from rendering speed and storage requirements. For example,
Fig. 5(a) illustrates the structure of the flow of the ABC data set. It
can be seen that sites move smoothly over time as long as there are
no rapid, incoherent movements in the data set. Fig. 5(c) shows that
the density in different regions of the data set can be estimated much
better with a set of site representatives than with rendering points
directly (Fig. 5(b)). It also demonstrates that the basic structure
of the data set is preserved even when using a drastically reduced
amount of points. Random sampling (Fig. 5(d)) does not preserve
the structure of data set as well and results the in the loss of many
small features. Occlusion problems are illustrated in the laser ab-
lation example in Fig. 6(a). When rendering all points of all time
steps at once, most of the important information remains hidden
due to the extensive mutual occlusion of the molecules. Further-
more, it is almost impossible to estimate the amount of molecules
being expelled. The reduced version in which one site represents
m = 125 points illustrates this much better (Fig. 6(c)).

One domain expert concluded that “since attributes like angle,
velocity, or cluster size distribution highly depend on the applied
laser, a quick way to grasp the ablation process qualitatively (e.g.
the opening-angle of the evolving gas plume as can be seen from the
reduced trajectories) and without major data post-processing is very
useful.” Another expert mentioned, more concretely, that “while
the basic vertical movement [of the expelled particles] is captured
by appropriate color coding, the diagonal movement (which is in-
herent to the data) is better visible in Fig. 6(c) than in Fig. 6(a).”
Similarly, one expert found that for the visualization of the colli-
sion scenario “Fig. 1(a) is not useful, and that Figures 1(b) and 1(c)
miss the temporal information. Fig. 1(d), however, faithfully cap-
tures the main trend of the collision where distant path lines also
capture the left droplet’s instability.” He also stated an analogue vi-
sualization could be “very useful for lab-on-a-chip systems where
one could estimate where the desired flow is disturbed, i.e. where
one would have to adjust the channel structure for undisturbed sub-
stance transportation.”

In the following examples, we analyze the effect of the looseness
parameter l more deeply. First, we show key problems of strict
and unrestricted point constraints as occurring with the CCVD and
the k-means approach, respectively, and demonstrate that they can
be resolved using LCCVD. We then present detailed timings and
quality measures based on our quality metric introduced in Sec. 5.

Fig. 7 illustrates that a strict capacity constraint (l = 0) poten-
tially forces sites to represent points from two or more dense clus-
ters. This leads to sites floating in-between clusters of points such
that they are located where no associated points are (e.g. the purple

(a) Sites, l = 0.2, m = 500, t = 70

(b) Closeup for l = 0, m = 50 with inappropriate sites highlighted (c) Closeup for l = 0.2, m = 50

Figure 7: Argon in vacuum. (a) Overview over the reduced version. (b) Strict capacity constraints (l = 0) force inappropriate site locations between
dense point groups, falsely creating the impression of occupied space. (c) Using loose constraints (l = 0.2) largely remedies this problem.

site on the left, or the green site on the right in Fig. 7(b)). Loosen-
ing the capacity constraint using a value of l = 0.2 and temporarily
relaxing the minimum constraint as described in Sec. 3.3 largely
avoids these issues (see Fig. 7(c)).

However, too loose constraints may lead to an over- or under-
representation of the point density, i.e. regions where a site either
represents a too small or too big portion of the data set. Fig. 8
demonstrates overrepresentation for the methane-ethane collision
data set with a very loose constraint of l = 5 (Fig. 8(a)). Thus,
when displaying sites only, the surrounding of the droplets appears
much more dense than it actually is. This way, path lines gener-
ated with a very loose constraint (Fig. 8(b)) give the impression of
a much larger amount of points being spread (Fig. 8(d)).

These observations from the example data sets are underlined by
our quality metric for which we present detailed results in Table 2.
For each data set, we list both the quality q and the associated com-
putation times while varying the capacity looseness l from l = 5
(almost unconstrained) to l = 0 (strictly constrained). For better
comparability, we omitted the temporary relaxation of the minimum
constraint as described in Sec. 3.3 for this test series. Across all
data sets, the best results were obtained by applying a loose capac-
ity constraint of l ≈ 0.2 despite the variations due to different data
sets or site configurations; l = 0.1 delivered nearly as good results
and might be favorable if stricter bounds are required. Note that a
difference in the quality metric of 0.001 is equal to the difference of
a thousand points being completely covered or uncovered in a data
set of a million points. Smaller quality values thus either indicate
poorly located sites, or an inappropriate amount of sites covering
a particular part of the data set. As demonstrated in the examples,
these cases typically occur in regions with a rapid change in point
density. In turn, we measure negligible differences for our exam-
ple data sets for regions of approximately constant density. Quality
results for a statistical sampling-based approach (provided for com-
parison) are typically around ≈ 0.62.

The timing results in Table 2 underline that the computation time
for LCCVD strongly depends on the amount of points per site m.
The main reason for this is that the GPU load decreases with a de-
creasing number of sites. For example, a GTX 480 features 15
SMs, each of which can execute two warps concurrently. As each
warp processes point swapping operations in groups of 128 sites,
any number of sites below 15 ·2 ·128 = 3840 is not able to fully uti-
lize the GPU. In order to hide latencies, the actual number of sites

Capacity Looseness
l = 5.0 l = 0.5 l = 0.3 l = 0.2 l = 0.1 l = 0

Argon in vacuum, 2000000 points, 100 time steps, periodic
4000 sites, m = 500 points per site (random sampling: .61829)

.02709 .00549 .00159 .00006 .86951 .01683
11162.6s 17157.7s 16371.1s 15289.4s 14469.7s 14028.0s

20000 sites, m = 100 points per site (random sampling: .62090)
.03593 .00806 .00182 .86262 .00040 .02100
9005.7s 7476.3 7374.2s 7306.4s 7012.6s 6412.8s

40000 sites, m = 50 points per site (random sampling: .62269)
.04639 0.00957 .00183 .85439 .00073 .02050
9003.1s 10038.3s 10159.0s 9986.1s 9846.4s 9572.3s

Laser Ablation, 562500 points, 400 time steps, periodic
1125 sites, m = 500 points per site (random sampling: .63140)

.00723 .00234 0.00057 .89489 .00136 .02374
10545.7s 10066.8s 9419.4s 8753.3s 9460.2s 4559.7s

11250 sites, m = 50 points per site (random sampling: .63249)
.03189 .00698 .00190 .89575 .00026 .03704
4497.3s 4529.9s 3801.6s 4476.6s 4438.1s 5954.0s

Methane-Ethane Collision, 81672 points, 1782 time steps, periodic
3403 sites, m = 24 points per site (random sampling: .61536)

.17199 .019660 .00369 .85184 .00149 .07216
1586.8 1566.4 1575.2 1575.0 1984.2 1476.4

1992 sites, m = 41 points per site (random sampling: .61234)
.17063 .02065 .00299 .00007 .84938 .02328
1894.3s 1847.6s 2228.1s 1865.8s 1837.3s 1633.8s

ABC, 2097152 points, 400 time steps
16384 sites, m = 128 points per site (random sampling: .62235)

.02554 .01221 .00335 .85882 .00018 .01205
4002.4s 4195.0s 4178.9s 4135.7s 3974.0s 4217.0s

4096 sites, m = 512 points per site (random sampling: .62183)
.06424 .02968 .01034 .00307 .86803 0.00810
6566.4s 8393.2s 8180.8s 7886.8s 7027.9s 5124.9s

Table 2: Performance of LCCVD for different data sets, loose con-
straints l and no cmin relaxation. The top rows depicts the best (mean-
ing largest) quality results in bold while the other results are given as
the difference to this reference value. The bottom rows give the com-
putation times in seconds. Additionally, quality results for random
sampling are provided for comparison.

(a) l = 5, m = 23, t = 400 (b) l = 5, m = 23, t = (0,400)

(c) l = 0.2, m = 23, t = 400 (d) l = 0.2, m = 23, t = (0,400)

Figure 8: Collision of methane and ethane. (a, b) Very loose or no
capacity constraints lead to points that are highly overrepresented
by sites which gives the false impression of a substantial amount of
particles in the outer regions. (c, d) A loose constraint of l = 0.2 yields
a much more genuine result.

should even be significantly higher since warps may be paused or
stalled. In contrast to the number of points per site m, the capacity
looseness l only has minor influence on the runtime.

Lastly, we measured the effect of the temporary cmin relaxation
compared to the best quality values listed in Table 2. In general, the
technique is most beneficial for data sets which induce the genera-
tion of bad sites—e.g. due to multiple groups of points of varying
density—as discussed in Sec. 3.3. This particularly applies to the
argon in vacuum data set (Fig. 7). In this scenario, the quality q can
approximately be improved by 0.01 for m = 50. At the same time,
however, the execution time is almost tripled to 28409s. For data
sets with significantly less bad sites, e.g. the laser ablation data set,
the quality improvement is only about .001 on average at roughly
twice the execution time. The coverage quality of the methane-
ethane collision data set with 3403 and 1992 sites increases by
.00153 and .00055 respectively, while the runtime roughly doubles.
Furthermore, we observed that the processing time as well as the
quality value achieved for a single time step is largely independent
of whether it has been computed as part of a time series or individ-
ually. In some cases, however, time steps which are part of a series
are processed significantly faster if the changes between two sub-
sequent time steps are rather small. In such a case, the site-to-point
assignment of the new time step only requires minor adjustments
compared to the previous step in the series.

7 CONCLUSION AND FUTURE WORK

We presented a novel technique for particle-based visualizations
that uses a set of representatives instead of a large number of parti-
cles. To obtain these representatives, we introduced loose capacity-
constrained Voronoi diagrams and presented a fast, parallel method
for their computation. We demonstrated that the representatives
faithfully capture the underlying particle density and exhibit coher-
ent movement for time-dependent simulations. Using these repre-
sentatives, we are able to generate sparse yet concise renderings
with spheres and path lines in the context of different application
domains. For future work, we plan to compare our metric results
to traditional density based techniques. We also would like to in-
vestigate the usage of LCCVD to build hierarchical structures from
large point data sets (e.g. for LOD techniques).

ACKNOWLEDMENTS

The authors thank Filip Sadlo and Marcel Hlawatsch for their

support with the ABC data set. This work is partially funded by
Deutsche Forschungsgemeinschaft as part of SFB 716 project D.3
and the Cluster of Excellence in Simulation Technology.

REFERENCES

[1] Amira. http://www.amiravis.com/.
[2] F. Aurenhammer, F. Hoffmann, and B. Aronov. Minkowski-type the-

orems and least-squares clustering. Algorithmica, 20:61–76, 1998.
[3] AVS. http://www.avs.com.
[4] M. Balzer and D. Heck. Capacity-constrained Voronoi diagrams in

finite spaces. In Proceedings of the Symposium on Voronoi Diagrams
in Science and Engineering, pages 44–56, 2008.

[5] M. Balzer, T. Schlömer, and O. Deussen. Capacity-constrained point
distributions: A variant of Lloyd’s method. ACM Transactions on
Graphics (Proceedings of SIGGRAPH), 28(3):86:1–8, 2009.

[6] A. Banerjee and J. Ghosh. On scaling up balanced clustering algo-
rithms. In In Proceedings of the SIAM International Conference on
Data Mining, pages 333–349, 2002.

[7] S. Basu, I. Davidson, and K. Wagstaff. Constrained Clustering: Ad-
vances in Algorithms, Theory, and Applications. 2008.

[8] K. Bidmon, G. Reina, F. Bös, J. Pleiss, and T. Ertl. Time-Based Hap-
tic Analysis of Protein Dynamics. In Proceedings of World Haptics
Conference (WHC 2007), pages 537–542, 2007.

[9] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained k-means
clustering. Technical report, Microsoft Research, 2000.

[10] UCSF Chimera. http://www.cgl.ucsf.edu/chimera/.
[11] A. Dix and G. Ellis. by chance enhancing interaction with large data

sets through statistical sampling. In Proceedings of the Working Con-
ference on Advanced Visual Interfaces, pages 167–176. ACM, 2002.

[12] X. Du and Y. Zhuo. A point cloud data reduction method based on
curvature. In IEEE 10th International Conference on Computer-Aided
Industrial Design, pages 914–918, 2009.

[13] R. O. Duda and P. E. Hart. Pattern classification and scene analysis.
Wiley New York, 1973.

[14] G. Ellis and A. Dix. A taxonomy of clutter reduction for informa-
tion visualisation. IEEE Transactions on Visualization and Computer
Graphics, pages 1216–1223, 2007.

[15] R. Fraedrich, J. Schneider, and R. Westermann. Exploring the mil-
lennium run – scalable rendering of large-scale cosmological datasets.
IEEE Trans. on Vis. and Comp. Graph., 15:1251–1258, 2009.

[16] S. Grottel, G. Reina, C. Dachsbacher, and T. Ertl. Coherent Culling
and Shading for Large Molecular Dynamics Visualization. In Euro-
graphics/IEEE Symposium on Visualization, 2010.

[17] S. Grottel, G. Reina, J. Vrabec, and T. Ertl. Visual Verification and
Analysis of Cluster Detection for Molecular Dynamics. In Proceed-
ings of IEEE Visualization ’07, pages 1624–1631, 2007.

[18] G. Guo, H. Wang, D. Bell, and Q. Wu. Data reduction based on spatial
partitioning. In Computational Science - ICCS 2001, volume 2074,
pages 245–252. 2001.

[19] E. Kolatch. Clustering algorithms for spatial databases: A survey,
2001.

[20] A. Lagae and P. Dutré. A comparison of methods for generating Pois-
son disk distributions. CG Forum, 27(1):114–129, 2008.

[21] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci.
Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1053–1060, 2006.

[22] PyMOL. http://pymol.sourceforge.net/.
[23] J. S. Richardson. The anatomy and taxonomy of protein structure.

Advances in protein chemistry, 34:167–339, 1981.
[24] Y. Sang, Z. Yi, and J. Zhou. Spatial point-data reduction using pulse

coupled neural network. Neural Process. Lett., 32(1):11–29, 2010.
[25] N. Satish, M. Harris, and M. Garland. Designing efficient sorting

algorithms for manycore GPUs. In IEEE International Symposium on
Parallel & Distributed Processing, pages 1–10, 2009.

[26] W. Song, S. Cai, B. Yang, W. Cui, and Y. Wang. A reduction method
of three-dimensional point cloud. pages 1–4, 2009.

[27] Visual Molecular Dynamics. http://www.ks.uiuc.edu/Research/vmd/.
[28] T. Weinkauf, H. Theisel, J. Sahner, and H.-C. Hege. UFEA: Unified

Feature Extraction Architecture. In Proceedings of TopoInVis 2009.

