
SIGRAD 2010

Particle-based Rendering for Porous Media

S. Grottel1 and G. Reina1 and T. Zauner2 and R. Hilfer2 and T. Ertl1

1Visualisation Research Center (VISUS), University of Stuttgart, Germany
2Institute for Computational Physics, University of Stuttgart, Germany

Abstract
Particle-based modeling and simulation of granular or porous media is a widely-used tool in physics and material
science to study behavior like fracture and failure under external force. Classical models use spherical particles.
However, up to 108 polyhedral-shaped particles are required to achieve realistic results comparable to labora-
tory experiments. As contact points and exposed surfaces play important roles for the analysis, a meaningful
visualization aiding the numeric analysis has to represent the exact particle shapes. For particle-based data sets
with spherical particles, ray tracing has been established as the state-of-the-art approach yielding high rendering
performance, optimal visual quality and good scalability. However, when rendering polyhedral-shaped particles,
there is no issue with visual quality comparing polygon-based rendering approaches and ray casting, whereas the
polygon-based approaches cause significantly lower fragment load. The paper at hand investigates the advantages
and drawbacks of both approaches by analyzing the performance of state-of-the-art rendering methods employing
vertex-buffer objects, hardware-supported instancing, geometry shader, and GPU-based ray casting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations; I.3.8 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Applications.

1. Introduction and Related Work

In many fields of science, including physics and mate-
rial science, particle-based simulation is a well-established
tool for studying material properties and material behav-
ior under external forces. Material samples are modeled
by large amounts of particles representing discrete entities
from the application domain. In molecular dynamics, these
are usually atoms, or mass-center-based representations of
molecules, e. g. Lennard-Jones mass centers [GRVE07].
These particles have no specific shape, but a simple effec-
tive radius, and are thus visualized as spheres. Rendering
these is well understood [Gum03] and high-performance
algorithms are available. Ray casting has been established
as the state-of-the-art approach for rendering this type of
data [GRDE10] allowing for interactive visualization of sev-
eral millions of spheres on standard desktop computers.
For quadratic surfaces, e. g. spheres or cylinders, this ap-
proach yields best performance, scalability and visual qual-
ity, compared to alternatives like texture-based point sprites
or mesh-based approaches. For arbitrarily-shaped, curved

surfaces the superior visual quality of ray casting is also fa-
vorable [KHK∗09].

In materials science one is often confronted with ma-
terials exhibiting complex stochastic microstructures and
textures. Important examples are porous materials [Hil96].
Some classes of porous materials, such as sandstones, ex-
hibit a granular microstructure resulting from the physic-
ochemical processes that generated the material. Simula-
tions of such media often start from models with spherical
grains, due to the simplicity of handling interactions. How-
ever, for realistic results non-spherical particles are required.
These can be modeled by composing a grain out of several
spherical sub-grain particles (e. g. employing the discrete el-
ement method [JBPE99]). This approach has scalability is-
sues when trying to achieve simulation system sizes of 108

grains. This is the required size to be comparable to lab-
oratory experiments. Therefore, current simulations try to
employ polyhedral-shaped particles [LBFH10], which, how-
ever, complicates the process of evaluating contact points

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

Figure 1: A small porous media sample modeled from
10 000 particles of 100 crystallite template types with 18
faces each.

and forces. To achieve consistency with numerical analysis,
visualizing these particles correctly is of high importance.

The scenario of porous media, e. g. sandstone, which the
work at hand specifically looks at, is closely related to vi-
sualizing granular media, as such media is also modeled
from polyhedral-shaped particles, namely quartz crystal-
lites [HZWH09]. An exact visualization of the particles is
required as their shapes define the shape and amount of the
surface of the media in cavities and tunnel networks exposed
to surrounding media like gas or liquid (e. g. consider thick-
film gas sensors [MC95]).

Rendering arbitrary polyhedral shapes is traditionally
achieved by means of a polygon mesh. Although this is
straightforward, it is not clear whether this is the best ap-
proach when visualizing very large data sets. On the one
hand, a data set of 1 000 000 particles easily requires up to
200 000 000 triangles to be rendered (Tab. 1). On the other
hand, usually there are not a million unique particle meshes,
but particles are scaled and rotated instances of only several
dozen particle templates. This fact can be exploited to op-
timize the rendering performance, allowing for interactive
visualization of data sets with up to several millions of par-
ticles. These data set sizes are currently produced by sim-
ulations in the application domain. A similar approach was
used by Lampe et al. [LVRH07] to visualize large proteins
by rendering instances of amino acids instead of individual
atoms.

The main contribution of this work is the presentation
and comparison of state-of-the-art rendering techniques that
yield polyhedra. The detailed performance analysis identi-
fies the best approach based on data set size and particle
complexity.

Figure 2: Comparison of 2D sections (2.25 mm × 2.25 mm)
experimental data (µ-CT; left) with reconstructed model
(right) of Fontainebleau sandstone. Grains are shown in
gray, while space in-between is shown in black. The recon-
structed model is stochastically very similar to the experi-
mental data. The degree of stochastic similarity was mea-
sured and documented quantitatively using numerous geo-
metric observables described in detail in [LBFH10].

2. Modeling Porous Media

Porous media may be loosely characterized as materials con-
taining a complex system of internal surfaces and phase
boundaries [Hil96]. The random appearance of the phase
boundaries has lead to a variety of stochastic models [Hil02,
Hil00]. Stochastic reconstruction models for porous me-
dia have been investigated extensively in [MH99, MTH00,
BH99].

A fundamental drawback of stochastic reconstruction
models as well as segmentation of 3D X-ray or synchrotron
microtomograms obtained from scattering experiments is
the representation of the microstructure on a regular (cubic)
lattice [BHK∗09]. Such a representation at a single, fixed
resolution precludes multiscale modeling of porous media,
because only a single scale can be represented with currently
available data manipulation capacities. Recently this funda-
mental limitation of lattice-based models was overcome in
stochastic continuum models [BHK∗09,BØH∗09,LBFH10].

Visualization and 3D-imaging of stochastic continuum
models is important for identifying and modeling regions
of interest in multiscale porous media, such a microporous
regions with sub-micron-sized pores or microcrystalline re-
gions with nanometer crystallites. It has never been carried
out for multiscale sandstones due to the lack of suitable mod-
els on the pore scale. Here we report a first step in this di-
rection. We present fast visualizations of continuum mod-
els for sandstones with polyhedral grains obtained from a
novel molecular dynamics method of generating the stochas-
tic point process underlying the stochastic continuum mod-
els. While the molecular dynamics method will be described
elsewhere, we report here details of the rendering technique.

When visualizing media modeled by such crystallites we
can exploit several factors. The rather small number of crys-
tallite template types makes this scenario a perfect candidate

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

Figure 3: Two crystallites used to model the porous me-
dia; Left: rather uniform crystallite with 18 faces; Right:
crystallite with 50 randomly placed faces used for perfor-
mance measurements only. Orange lines show the face nor-
mals defining the tangent planes.

for instancing approaches. The flat faces of the crystallites
seem to be well suited for classical mesh-based approaches,
as there are no resolution concerns, neither in form of mesh
tessellation nor as image-space resolution, e. g. for curved
surfaces. The crystallite definition using tangent planes of a
single sphere yields always completely convex crystallites
as the structure can also be obtained by employing Voronoi
Diagrams on spheres [NLC02]. Thus, each face of each par-
ticle also is a convex polygon within the tangent plane. This
allows for the rather simple generation of a triangle-mesh
representation for each particle.

3. Rendering Approaches

Particle-based rendering is originally based on graphical
point primitives (i. e. GL_POINT in OpenGL). This ap-
proach scales very well for very large numbers of parti-
cles, but is usually restricted to simple particle types like
point sprites. Ray casting with programmable graphics hard-
ware allows for smooth particle shapes, like spheres or
cylinders. For increased particle complexity or arrays of
mesh instances there are several instancing techniques avail-
able. They usually employ vertex-buffer objects (VBOs),
hardware-supported instancing, or programmable geometry
shaders.

As has been published earlier [GRE09], modern graphics
cards can easily process particle-based data sets with up to
a million particles without the need of any optimized data
structure. Since we are only interested in performance and
scalability of the different rendering approaches described in
this work, we do not apply any optimized data structure, as
such would impair the scaling behavior with respect to data
set sizes. For a system capable of visualizing multi-million
particle data sets we can apply object-space subdivision and
visibility prediction based on occlusion queries as has been
previously presented [GRDE10].

All approaches share some common ideas: a particle-
space coordinate system is introduced for each particle, sim-

ilar to object-space, in which the geometry of the used crys-
tallite is placed at the origin with a defined orientation. The
transformation from this system to the object-space coordi-
nate system is described by eight scalar values (3 for posi-
tion, 1 for size, 4 holding an orientation quaternion). When
using opaque representations, the order in which the parti-
cles are drawn can be optimized to minimize state changes
of the rendering engine. This is the case when the particles
are sorted based on the crystallite template type they instan-
tiate.

3.1. VBO-based Rendering

The first approach is based on the idea to store all par-
ticle template types in graphics memory. For each parti-
cle the triangle mesh is computed in particle-space and
stored within a VBO. The best-suited VBO access-mode is
GL_STATIC_DRAW as the particle templates are not altered
after creation.

For each particle type, the corresponding VBOs (vertices
and normal vectors) are activated. To instantiate the particle
the VBOs are drawn once (One call of glDrawArrays per
particle). The transformation from particle-space into object-
space can be implemented either by using the built-in model
view matrix, or by using a simple shader program, which
results in better performance due to fewer state changes. Be-
cause of the high number of OpenGL function calls this ren-
dering approach has the highest CPU load.

3.2. Hardware-supported Instancing

The high number of function calls of the simple VBO-based
rendering, which result in high CPU load, can be reduced
using hardware-supported instancing. While this instancing
rendering approach is very similar to the previous one—both
using one VBO per crystallite template type—the place-
ment, orientation, and scaling of the particles has to be trans-
ferred differently to the shader program when using instanc-
ing, since all particles are drawn with a single function call.
The shader program must be able to determine the transfor-
mation data, which has to be uploaded to the graphics hard-
ware as well, based on the instancing index.

We store the required transformation data in a single
RGBA float texture (two texels per particle) for optimized
texture upload, since the vertex data upload, which would
originally be used for this data, is already used by the par-
ticle template VBOs. However, the maximum texture size
(8k×8k) limits the number of particles of one crystallite type
to 33.5 millions (8k×8k/2) to be drawn in a single call. To
overcome this limit, we can simply use multiple draw calls.

3.3. Geometry Shader

Programable geometry shaders allow for using the vertex
data upload for the particle data again, similar to the clas-

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

#Faces #Triangles #Vertices
(unique/drawn)

4 4 4/12
10 ∼ 26 ∼ 15/∼ 46
20 ∼ 68 ∼ 36/∼ 108
50 ∼ 200 ∼ 98/∼ 300

Table 1: Number of triangles and vertices per crystallite for
a given number of faces; the numbers vary slightly for the
different crystallite templates due to the different plane cut-
ting conditions. The two numbers of vertices show the num-
ber of unique vertices, required when storing the mesh data
in VBOs, and the number of vertices needed to be drawn
based on the number of triangles (relevant for the geometry
shader approach).

sical approach. The idea is to upload point data and per-
form the crystallite template instancing through the geome-
try shader. We generate one shader for each crystallite type,
which is similar to the idea employed by [LVRH07]. The
triangle-meshes of the crystallites are stored not in VBOs
but in the corresponding geometry shader’s code directly.
The calculation of the mesh is done on the CPU. We then
generate a geometry shader code which outputs this mesh
directly in normalized device coordinates. The output type
GL_TRIANGLE_STRIP allows to efficiently render each
face of a crystallite, similar to the previously described ap-
proaches.

Since the output size of each geometry shader is known,
load-balancing within the graphics hardware should be pos-
sible. However, the maximum number of vertices output
from the geometry shader is limited. On current graph-
ics cards, the limit† of scalar values output per geometry
shader invocation is 1024, resulting in a maximum number
of 1024/8 = 128 vertices (8 components since we need to
set gl_Position and gl_FrontColor). Table 1 shows
that crystallites with 20 faces are already very close to that
limit (23-24 faces exceed the limit). However, this limit is
not crucial, since 18 faces are sufficient to achieve a realistic
model, as stated in section 2. Nevertheless, if more complex
crystallites are required in future, the geometry shader ap-
proach will need to be modified (e. g. splitting up the crys-
tallites into several shaders), which will introduce more state
changes and additional data to be uploaded.

3.4. Ray Casting

The original particle-based visualization works with point
primitives and GPU-based ray casting of implicit surfaces
resulting in perspective-correct object appearance of each

† GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, see
the geometry shader extension specification [Geo]

V
ie

w
in

g
D

ir
ec

tio
n

p1

p2

p3

p4

n3

n2n1

r1r2

Figure 4: The principle of ray casting convex polyhedra (in
2D convex polygons). Viewing ray r1 hits tangent plane of
normal n1 at point p1. Hit point p2 is the farthest front face
hit point and thus the correct point. Viewing ray r2 would
choose p3 this way. However the front-most back face hit
point p4 with plane of normal n3 is closer to the viewer.
Thus viewing ray r2 does not hit the polyhedron (polygon)
at all.

particle. This approach is especially beneficial for smooth
quadratic surfaces, like spheres, due to the always optimal
image-space resolution. However the ray casting gets more
and more computationally intense the more intersections be-
tween the viewing ray and particle geometry have to be cal-
culated.

The central idea of GPU-based glyph ray casting fol-
lows the approach of point sprites, for which OpenGL
GL_POINTS are extended to image-space window-aligned
quads. While the classical point-sprite approach places a tex-
ture on each quad, e. g. the image of a sphere, GPU-based
ray casting performs a single ray casting step, also known as
local ray tracing, in the fragment shader for each fragment,
calculating the perspective correct rendering of any implicit
surface encoded in the ray-surface intersection equation.

For the polyhedral-shaped particles used in this paper, a
viewing-ray plane intersection has to be calculated for each
tangent-plane of the crystallite. For each intersection, a sim-
ple dot product of the viewing ray and the plane normal
specifies whether the plane was hit front-side. The correct
intersection is the farthest hit of a front face. However, if the
nearest hit of a back face is in front of this one, the crystallite
is not hit at all (See Fig. 4). Note that no sorting of intersec-
tions needs to be performed because simple min and max
operations during the hit tests are sufficient. This approach
is basically similar to the work on bounding objects for ray
tracing presented by Kay and Kajiya [KK86].

Similar to the idea of the geometry shader-based ap-
proach, we can render all particles using a single draw call
with one shader for each crystallite template type performing
the ray casting and lighting operations.

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

4. Results

All performance measurements were conducted on a ma-
chine with Intel Core I7 980X 3.33 GHz CPU, 12 GB RAM,
NVIDIA GeForce GTX 480 graphics card, running Win-
dows 7 (x64). The viewport resolution was 1024×1024. Ta-
ble 2 shows all rendering performance values.

In principle, all techniques scale linearly with the num-
ber of particles. The two exceptions to this are the perfor-
mance values for 10 000 particles and the values of the ray
casting rendering technique. For small particle numbers the
overhead of the individual methods (e. g. even back buffer
clearing) becomes the limiting factor. The ray casting ap-
proach scales better with the number of particles, because it
is based on fragment processing—while all other approaches
are based on vertex processing—and the number of frag-
ments per particle decreases with increasing number of par-
ticles due to the limited screen-space resolution.

For the VBO-based rendering approach there is no signif-
icant difference between rendering of crystallites with 4 to
20 faces. We presume that this is due to the high CPU load
of this method as discussed in Sec. 3.1. Thus, the difference
between the VBO sizes is insignificant. This is not the case
when comparing the values of the 20-faced crystallite with
the values of the 50-faced crystallite. As the number of faces
roughly double the frame-rates are roughly halved, as would
have been expected.

The hardware instancing rendering method, which fol-
lows an idea similar to the VBO-based rendering, trades the
high CPU load for the additional overhead of requiring the
upload of the particle data to the graphics memory as tex-
tures. Quite surprisingly, despite of the upload this approach
is favorable for almost all cases, except for complex particles
(20 or 50 faces) in small data sets (10 000 particles). For the
small data sets the overhead of the texture upload limits the
overall rendering performance of this approach. However,
even in these situations the performance is still comparable
to the VBO-based method.

The geometry shader is known to perform quite poorly
when the number of output primitives varies strongly or
when the number of output primitives is much higher com-
pared to the number of input primitives. Since we create one
shader for each crystallite template type with a fixed number
of output-primitives the first aspect of varying output is not
an issue. However, the second aspect of a disadvantageous
ratio of input primitives to output primitives can be seen
with growing number of faces per crystallite. While the ge-
ometry shader clearly outperforms all other rendering tech-
niques for tetrahedral-shaped crystallites (×2 compared to
hardware instancing and up to one order of magnitude com-
pared to VBO-based rendering; top-most curve in Fig. 6),
it quickly becomes slower as the number of output trian-
gles increases. For 10-faced crystallites it is roughly at the
same level as VBO-based rendering, but it scales better with
higher numbers of particles, possibly due the CPU limitation

of the VBO-based approach. For 20-faced crystallites and at
least 100 000 particles the ratio of input objects to output
objects is disadvantageous to such an extent that the geom-
etry shader approach results in the worst performance. The
geometry shader programs fail to compile for 50-faced crys-
tallites as discussed in Sec. 3.3. Although it would be pos-
sible to create the whole crystallite’s geometry with two or
three shaders, this would require increased particle upload
(×2 or ×3) and an increased number of state changes due
to the additional shaders. Considering the huge performance
drop from 10-faced crystallites to 20-faced crystallites and
the additional overheads mentioned above, it is unlikely that
this approach would yield better performance than the alter-
natives.

The ray casting approach is the only approach consid-
ered in the work which is based on fragment-processing in-
stead of vertex-processing. It therefore adds a dependency
to the screen-space sizes of the rendered particles. For large
particles this method is much slower than the vertex-based
methods, which is shown by the values of the small data
set (10 000 particles). However, even for the 100 000 par-
ticles data sets, particles become small enough in screen
space (still 20× 20 pixels) that this method yields perfor-
mance comparable to the other rendering methods. For data
sets of 1 000 000 particles or more, the ray casting approach
scales extremely well, as the particles keep getting smaller in
screen space, and the method reaches frame rates ×2 to ×5
faster than the alternative methods (see blue lines in Fig. 6).

5. Conclusion and Future Work

In this paper we presented four different techniques for ren-
dering polyhedral-shaped particles which are used to model
porous media. The rather straightforward VBO-based ren-
dering has a simple implementation but does not scale well
with the number of particles due to the CPU-controlling
scheme. Since the modeling of porous media has simi-
lar concepts as instancing, hardware-supported instancing
yields better performance than pure VBO-based rendering
for medium-sized and large data sets. The geometry shader
shows the best rendering performance for simple particle
sizes, i. e. tetrahedra. For large data sets and complex shaped
particles GPU-based ray casting highly benefits from the
small particle sizes in image-space and achieves the best per-
formance of all methods. This may not be the case for large
display installations.

As a rule of thumb, for data set sizes below 1 000 000 par-
ticles the instancing approach yields best performance re-
sults. Rendering data sets with several millions of particles
the ray casting approach is fastest on workstation comput-
ers. The geometry shader works very well with tetrahedral-
shaped particles.

An optimized hybrid implementation could be obtained
when choosing the different rendering approaches for dif-
ferent situations, even within a single rendering cycle (e. g.

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

Figure 5: The data sets used for the performance measurements (Tab. 2) with (from left to right) 100 000, 1 000 000, 10 000 000,
and 100 000 000 particles. The used crystallite types have always 20 faces. All rendering methods produce exactly the same
images.

#Particles
#Faces Technique 10 000 100 000 1 000 000 10 000 000 100 000 000

VBO 644.5 80.0 7.73 0.778 0.061
4 Inst 1259.0 295.6 34.3 3.03 0.254

GPUGeom 1430.1 524.8 69.0 7.51 0.747
Raycast 181.3 81.7 25.9 4.31 0.566
VBO 635.5 80.1 7.7 0.758 0.064

10 Inst 962.6 209.4 24.8 1.98 0.16
GPUGeom 612.8 88.1 9.1 0.911 0.086
Raycast 160.0 62.9 19.3 3.19 0.39
VBO 610.6 76.6 7.64 0.682 0.066

20 Inst 592.3 105.8 11.5 1.12 0.094
GPUGeom 174.1 19.2 1.86 0.183 0.018
Raycast 133.8 61.0 15.2 2.11 0.25
VBO 315.2 38.0 3.87 0.37 0.038

50 Inst 306.7 40.9 4.1 0.392 0.039
GPUGeom – – – – –
Raycast 117.1 45.5 8.85 1.09 0.118

Table 2: The rendering performance values in FPS achieved by the different rendering techniques for different data sets.
#Faces are the number of crystallite faces (not triangles). Details on the rendering techniques can be found in the corresponding
subsections: VBO in Sec. 3.1, Inst in Sec. 3.2, GPUGeom in Sec. 3.3, and Raycast in Sec. 3.4. Note that the geometry shader
was unable to compile for crystallites with 50 faces (see Sec. 3.3 for discussion).

using ray casting for many small particles in the background,
while using instancing for the big particles in the fore-
ground). However, such an implementation would be quite
complex. Considering the fact that ray casting is always in-
teractive and for large data sets it is even the fastest method,
it is dubitable if this effort is justified.

There are some further improvements to the presented
methods and additional methods we would like to investi-
gate as future work. The geometry shader approach could
be further optimized by only generating front faces. Sim-
ilar to the test performed by the ray casting approach the
geometry shader could perform a back-face culling which
would roughly decrease the number of output primitives by
a factor of two. However, assuming there were no overhead,
the geometry shader would then e. g. reach the performance

values of 10-faced crystallites for 20-faced crystallites, and
thus, would still be slower than hardware-supported instanc-
ing for crystallites of relevant size. Nevertheless, the geom-
etry shader approach could benefit from future hardware ar-
chitectures.

Beyond the question of fast rendering the visual evalu-
ation of material properties arises. When rendering addi-
tional information, e. g. onto the surface of each crystallite,
the evaluation conditions on which rendering method to ap-
ply may change. Mesh-based approaches have the advantage
of easily usable texture-coordinates, while ray casting is al-
ready performed on a per-fragment basis e. g. allowing for
on-the-fly evaluation of a 3D scalar field, like a distance field
to the particle surfaces. For future work we plan to analyze
these aspects, not only for rendering but also for GPU-based

S. Grottel & G. Reina & T. Zauner & R. Hilfer & T. Ertl / Particle-based Rendering for Porous Media

0,01

0,1

1

10

100

1000

10000
FP

S

Particles

VBO 4 VBO 20 Inst 4 Inst 20
GPUGeom 4 GPUGeom 20 Raycast 4 Raycast 20

Figure 6: Rendering performance of all methods in FPS for
tetrahedral-shaped crystallites (dashed lines) and 20-faced
crystallites (solid lines). Geometry shader for 4-faced crys-
tallite is fastest (orange line). Most methods decrease lin-
early with the number of particles, except for when rendering
very few particles. Ray casting results (blue lines) decrease
more slowly than linear and thus are beneficial for large data
sets.

evaluation, especially when applied not to the particles them-
selves but to the empty space in between.

Acknowledgements

This work is partially funded by Deutsche Forschungsge-
meinschaft (DFG) as part of SFB 716 projects B.3 and D.3.

References
[BH99] BISWAL B., HILFER R.: Microstructure analysis of re-

constructed porous media. Physica A 266 (1999), 307. 2

[BHK∗09] BISWAL B., HELD R., KHANNA V., WANG J., HIL-
FER R.: Towards precise prediction of transport properties from
synthetic computer tomography of reconstructed porous media.
Physical Review E 80 (2009), 041301. 2

[BØH∗09] BISWAL B., ØREN P., HELD R., BAKKE S., HILFER
R.: Modeling of multiscale porous media. Image Analysis and
Stereology 28 (2009), 23–34. 2

[Geo] GLSL geometry shader 4 extension specification.
http://developer.download.nvidia.com/opengl/specs/
GL_EXT_geometry_shader4.txt. 4

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL
T.: Coherent Culling and Shading for Large Molecular Dynamics
Visualization. Computer Graphics Forum 29, 3 (2010), 953–962.
http://www.visus.uni-stuttgart.de/megamol. 1, 3

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized Data
Transfer for Time-dependent, GPU-based Glyphs. In Proceed-
ings of IEEE Pacific Visualization Symposium 2009 (2009),
pp. 65–72. 3

[GRVE07] GROTTEL S., REINA G., VRABEC J., ERTL T.: Vi-
sual Verification and Analysis of Cluster Detection for Molecular
Dynamics. vol. 13, pp. 1624–1631. 1

[Gum03] GUMHOLD S.: Splatting Illuminated Ellipsoids with
Depth Correction. In Workshop on Vision, Modelling, and Vi-
sualization VMV’03 (2003), pp. 245–252. 1

[Hil96] HILFER R.: Transport and relaxation phenomena in
porous media. Adv. Chem. Phys. XCII (1996), 299. 1, 2

[Hil00] HILFER R.: Local porosity theory and stochastic recon-
struction for porous media. In Räumliche Statistik und Statistis-
che Physik (2000), Stoyan D., Mecke K., (Eds.), Lecture Notes
in Physics, Vol. 254, Springer, p. 203. 2

[Hil02] HILFER R.: Review on scale dependent characterization
of the microstructure of porous media. Transport in Porous Me-
dia 46 (2002), 373. 2

[HZWH09] HARTING J., ZAUNER T., WEEBER R., HILFER R.:
Numerical Modeling of Fluid Flow in Porous Media and in
Driven Colloidal Suspensions. Springer, 2009, p. 349. 2

[JBPE99] JENSEN R. P., BOSSCHER P. J., PLESHA M. E., EDIL
T. B.: DEM simulation of granular media-structure interface:
effects of surface roughness and particle shape. International
Journal for Numerical and Analytical Methods in Geomechanics
23, 6 (1999), 531–547. 1

[KHK∗09] KNOLL A., HIJAZI Y., KENSLER A., SCHOTT M.,
HANSEN C., HAGEN H.: Fast Ray Tracing of Arbitrary Implicit
Surfaces with Interval and Affine Arithmetic. Computer Graph-
ics Forum 28, 1 (2009), 26–40. 1

[KK86] KAY T. L., KAJIYA J. T.: Ray tracing complex scenes. In
SIGGRAPH ’86: Proceedings of the 13th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1986), ACM, pp. 269–278. 4

[LBFH10] LATIEF F., BISWAL B., FAUZI U., HILFER R.:
Continuum reconstruction of the pore scale microstructure for
fontainebleau sandstone. Physica A: Statistical Mechanics and
its Applications 389, 8 (2010), 1607 – 1618. 1, 2

[LVRH07] LAMPE O. D., VIOLA I., REUTER N., HAUSER H.:
Two-Level Approach to Efficient Visualization of Protein Dy-
namics. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1616–1623. 2, 4

[MC95] MARTINELLI G., CAROTTA M. C.: Thick-film gas sen-
sors. Sensors and Actuators B: Chemical 23, 2-3 (1995), 157 –
161. 2

[MH99] MANWART C., HILFER R.: Reconstruction of random
media using Monte Carlo methods. Physical Review E 59 (1999),
5596. 2

[MTH00] MANWART C., TORQUATO S., HILFER R.: Stochastic
reconstruction of sandstones. Phys.Rev.E 62 (2000), 893. 2

[NLC02] NA H.-S., LEE C.-N., CHEONG O.: Voronoi diagrams
on the sphere. Computational Geometry 23, 2 (2002), 183 – 194.
3

