
Visual Verification and Analysis of Cluster Detection
for Molecular Dynamics

S. Grottel, G. Reina, J. Vrabec and T. Ertl

Abstract— A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this
process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the
processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy
efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and
the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular
clusters, which currently is a not completely resolved issue.
In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an
emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the
concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm
the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters’ evolution. This allows to
rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well
as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection
algorithms. Several examples for the effective and efficient usage of our tool are presented.

Index Terms— Cluster detection analysis, molecular dynamics visualization, time-dependent scattered data, glyph visualization,
out-of-core techniques, evolution graph view

1 INTRODUCTION

The nucleation of vapor into liquid phase is still a research topic for
thermodynamics researchers and is being investigated at the molec-
ular level with the help of distributed simulation runs. Starting with
datasets at a homogeneous state point in the vapor, either the pressure
is increased or the temperature is decreased so that a metastable state
point in the two-phase region is reached. The liquid phase emerges
through spontaneous density fluctuations in the vapor which lead to
the formation of molecular clusters. These predecessors of liquid
droplets reach a macroscopic size through aggregation of individual
molecules or coalescence with other clusters. The process is driven by
the tendency of physical systems to minimize its Helmholtz energy.
Such condensation is found in many physical phenomena, e.g. the for-
mation of atmospheric clouds or the processes inside steam turbines,
where the expansion of the water vapor to metastable state points is
desirable for maximum energy efficiency. However, water droplets of
macroscopic size damage turbine blades, so that detailed knowledge
of the dynamics of condensation processes is of great interest [9].

The key properties of these processes are the nucleation rate and
the critical cluster size. The critical cluster size designates clusters
with a certain number of monomers that have the same probability of
growth as of decay; smaller clusters will more likely evaporate and
bigger clusters will more likely continue to grow. The nucleation rate
quantifies the number of emerging clusters beyond the critical size per
volume and time.

Commonly relied-on basic principles, e.g. the classical nucleation
theory [35] for the dynamics of the condensation process, do not yield

• S. Grottel, Institute for Visualization and Interactive Systems, Universität
Stuttgart, E-mail: grottel@vis.uni-stuttgart.de.

• G. Reina, Institute for Visualization and Interactive Systems, Universität
Stuttgart, E-mail: reina@vis.uni-stuttgart.de.

• J. Vrabec, Institute of Thermodynamics and Thermal Process Engineering,
Universität Stuttgart, E-mail: vrabec@itt.uni-stuttgart.de.

• T. Ertl, Institute for Visualization and Interactive Systems, Universität
Stuttgart, E-mail: ertl@vis.uni-stuttgart.de.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online
27 October 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

satisfactory results when predicting nucleation rates. The classical nu-
cleation theory works well in some cases, but fails in many others [9]
and predicts values which deviate several orders of magnitude from
experimental findings [8]. The situation is even worse if mixtures of
several substances are concerned, e.g. in process industry. Further
problems arise if it is also considered that there is no perfect ther-
mal equilibrium between the vapor and the short-lived clusters of the
emerging liquid [28].

Molecular dynamics simulation is a powerful tool that helps to over-
come the shortcomings of the classical approach as it allows for de-
tailed insight into the processes that are triggered on the molecular
level. This also holds for other phase transitions like melting and
freezing [13]. Recently, adequate models for the intermolecular in-
teractions have become available [36, 29], which contain all the rel-
evant thermodynamic properties of real fluids. Thus, it can be ex-
pected that these models can predict nucleation rates much more ac-
curately. However, simulations of nucleation processes must use large
numbers of molecules to get meaningful results while yielding clus-
ter sizes up to thousands of molecules and more. Furthermore, low
nucleation rates can only be detected with very large systems, as they
indicate a rare event in large volumes. Large systems are also needed
to more closely approximate real-world conditions in most technical
condensation processes and thus to ensure comparability and verifia-
bility against real-world measurements. With the advent of commodity
hardware PC clusters, molecular dynamics simulation of large systems
has become more cost-effective and can also be utilized by researchers
on-site. The resulting datasets contain several hundreds of thousands
molecules and trajectories of thousands of time steps. We will refer to
such a time step as a configuration in this paper since this is the term
used in molecular thermodynamics[1]. Any software used for visual-
ization or analysis needs to be capable of handling such large datasets.

It is, however, even more important to verify the correctness of a
simulation and the employed clustering criterion than just having ac-
cess to interactive visualization. For the calculation of the nucleation
rate and the critical cluster size, it is essential to make use of a mean-
ingful definition for molecular clusters because only if the clusters are
correctly detected, the corresponding metrics will yield correct results.
One of our main concerns therefore is the verification of the cluster-
ing results with the aid of interactive visualization in addition to the
comparison of the resulting nucleation rates with experimentally ac-
quired values. By observing the detected clusters and their interaction

with the surrounding monomers, problems (and bugs) in the employed
molecule cluster detection algorithm can be isolated. This becomes
even more important when observing how the clusters evolve over
time and how they interact with other clusters. Our software provides
several visualization modes emphasizing these aspects. The molecu-
lar clusters can be represented by single ellipsoid glyphs to enhance
the perceptibility of the cluster. The monomers can be filtered to only
show those interacting with the clusters. The flow of molecules be-
tween clusters can be abstractly represented by flow groups that are
presented in this paper.

These visualization modes only present qualitative information
about the dataset, but are not sufficient to obtain quantitative values
in the identified regions in space and time where the cluster detec-
tion possibly failed. Therefore, we coupled the molecule view with
a schematic graph view representing information about the evolution
of the detected molecular clusters over time as well as the molecule
flow between these clusters. To reduce clutter when displaying the
molecule flow, we use synchronized selection in both views and fil-
ter the graph display based on that selection. A user can thus easily
get more information about the detected clusters, their evolution over
time and their interaction with each other and with the surrounding
monomers, allowing a fast analysis of the found situation. The flow
groups representing the molecular flow between two clusters can indi-
cate potential classification errors. In the visualization of the molec-
ular clusters the flow groups appear as arrows of defined sizes and
positions, so that they can easily be compared to molecule cluster el-
lipsoids. In the schematic view the flow is visualized as lines connect-
ing the different molecule clusters, which helps tracking the potential
classification problems over time. Using both views, the user can ben-
efit from an effective and efficient workflow for the assessment of the
molecular cluster detection results and for the identification of poten-
tial weak spots in these algorithms.

The remainder of this document is structured as follows: In Sec-
tion 2 we summarize related work. The point-based visualization of
the molecule datasets will be described in Section 3. The subsections
will, in addition, describe the data structure internally used and the rep-
resentations of molecular clusters and monomers used to emphasize
the molecule cluster evolution and problems of the molecular cluster
detection algorithms. Section 4 presents the schematic view for the
molecular cluster evolution. In Section 5, we present the results of our
system. These include rendering performance measurements and the
exemplary analysis of different molecular cluster detection algorithms.
We conclude with an outlook on future extensions in Section 6.

2 RELATED WORK

Scientists who make use of molecular datasets for structural analysis
or simulation runs face a plethora of tools of varying complexity for
the visualization of such data. Among the most widely known ap-
plications are Pymol [7], Chimera [25], Rasmol/Protein Explorer [22],
Molscript [20], and VMD [16]. Some of these have not seen updates in
several years, for example Molscript and Rasmol, while the more pop-
ular ones are still under development. More recently, a number of sim-
ple java-based viewers have been created for integration into web sites
of scientific databases, but these tools are not suited for large datasets
or time-dependent data at all because of performance and memory is-
sues. Popular commercial applications like Amira [2] are nowadays
offered with specialized modules for molecular visualization as well.
In most of these tools, the user has a good set of options for displaying
the datasets and can choose from many different drawing styles for
molecules with varying information density. Chimera, for example,
also offers the means for performing analyses and measurements on
the data. This flexibility, however, usually comes at the cost of sub-
optimal performance for large or time-dependent datasets. Carefully
optimized viewers like TexMol [3], BioBrowser [11], or the tool pre-
sented in [23] offer far better interactivity and performance since they
rely heavily on GPU-optimized, mainly point-based, rendering tech-
niques. Such point-based rendering of large datasets has been quite
an active area of research in the last few years. Many algorithms
deal with the point-based rendering of extremely large geometry, or

point set surfaces, first using the CPU [4, 39], and more recently us-
ing programmable graphics hardware [27, 24, 34]; others concentrate
on particle-based data itself, as seen in [14]. Since the rendering of
simple points neglects additional attributes and since isotropic repre-
sentations lack the conveyance of particle orientation, more complex
primitives have been introduced, for example ellipsoids [19, 10] or
dipole glyphs [26]. Current programs like Qutemol [33] not only offer
good rendering performance, but also enhance the perceptibility using
ambient occlusion and edge cueing. However, Qutemol lacks support
for time-dependent datasets. A singular approach using a mixed en-
vironment of a graphics workstation for rendering and a PC cluster
for scene optimization has been presented in [30], but this also offers
only few rendering styles. Furthermore, all of these optimized tools
lack the advanced features of VMD and Chimera as well as any sup-
port for time-dependent data. VMD and Chimera can display time-
dependent datasets, but have to load the whole dataset into system
memory. Many of the simulation datasets available to us are several
gigabytes in size, on the one hand because of the high number of con-
figurations they contain (several hundreds to thousands usually) and
on the other hand due to the high number of molecules contained (tens
to hundreds of thousands), and thus cannot be loaded completely into
memory on 32 bit-systems. There is no tool that we know of sup-
porting the tracking and visualization of specific aspects related to the
nucleation process. None of these tools includes criteria for detect-
ing clusters or allows the interpretation of the cluster membership of
loaded molecules to offer visualization methods that help to interpret
the nucleation process in gases.

The visualization of flow has been tackled recently with mostly
texture-based, dense representations. The texture-based approach
was introduced with LIC [5] and has seen many improvements and
hardware-accelerated implementations [18] since, even on 3D surfaces
[37] and for 3D fields [38, 17, 32]. Since an integral part of the in-
formation we need to visualize consists of the droplets themselves,
a dense representation could not meet our expectations as it would
clutter the rendering too much. Therefore, we worked on creating a
simple, sparse visualization which emphasizes the aspects of molecu-
lar cluster detection, stability of the detection results, and interactions
between clusters and between clusters and monomers, which are the
aspects the thermodynamics researchers are most interested in.

Furthermore, we do not know of any tool providing special func-
tionality for clustering algorithm verification, coupled with molecu-
lar visualization. There are tools helping to analyze other problems,
like the system presented in [21], which visualizes turbulences of the
mixing layer between two fluids of different densities. Their applica-
tion presents a three dimensional rendering of surfaces of the mixing
layer in combination with a schematic view of features (bubbles) of
the mixing turbulences, which they refer to as merge-split graph, visu-
alizing important events in the features’ evolution like births, merges,
splits and deaths. Our system with a coupled molecule rendering and
a schematic view of the evolution of the detected molecular clusters is
similar to this approach.

3 MOLECULE VISUALIZATION TECHNIQUES

The goal of our work was to aid the thermodynamics researchers in
analyzing the molecular dynamics datasets of their nucleation simula-
tions, in particular the detected molecular clusters and thus the quality
of the employed molecular cluster detection algorithm. To achieve this
goal, our software needs to be able to render large molecule datasets
with long trajectories at interactive frame rates, allowing an explo-
ration of the datasets to search for possible clustering problems. We do
not only have to render the molecules but also derived data, like flow
groups and ellipsoids representing molecular clusters. While some of
these derived data can be calculated for each configuration indepen-
dently, the calculation of others need information from past and future
configurations as well. Therefore, we have to perform a preprocessing
step on the datasets before visualizing them, which is presented in Sec-
tion 3.1 along with the data structures we create. Our time-dependent
visualization interpolates between the configurations to achieve a vi-
sually continuous output in order not to distract the user by abrupt

changes. When the playback is paused, time snaps to the nearest con-
figuration to present unaltered simulation data.

The direct point-based rendering of the molecule dataset will be
discussed in Section 3.2. To further emphasize the molecular clus-
ters we use ellipsoids representing the clusters instead of rendering
the molecules forming the cluster. The evolution of clusters is visu-
alized using color coding, which allows a qualitative classification of
the clusters. This approach is presented in Section 3.3. However, to
make a valid evaluation of the cluster detection algorithm, it is insuf-
ficient to only review the molecular clusters. The interaction between
clustered molecules and the monomers is also an important issue and
is discussed in Section 3.4.

3.1 Data Structure
To calculate all derived data features which require information from
more than just the current configuration, we employ a preprocessing
step. In addition, this gives us the opportunity to create a more suitable
data structure for the point-based rendering, which we use to visualize
the molecules, as well as supporting different input file formats. The
preprocessing is done by a separate program which generates a pro-
prietary binary file storing all data, including additional information
like the molecular cluster ellipsoids, flow groups, values for filtering
monomers, and file offsets for seeking within the trajectory. Although
each dataset has the same number of molecules in every configuration,
these file offset tables are necessary for seeking because the sizes of
the configurations in one file are not constant due to the varying num-
ber of clusters and flow groups.

The molecule positions can be stored directly, or they can be placed
in a positional hierarchy using relative quantized coordinates as pre-
sented in [14]. In addition, we use this hierarchy to classify the
molecules to allow for interactive switching between the different vi-
sualization modes. The direct children of the root node are used for
this classification. Hence, we have one node holding all monomers as
children, one node holding all molecular clusters, and so on. Molec-
ular clusters are represented by inner nodes of this hierarchy, which
store all information about the ellipsoidal shape of the molecular clus-
ter, and holding all contained molecules as children.

While the PCIe graphics bus is fast enough to transfer the uncom-
pressed float data, this is not true for the transfer of the data from hard
disks. Our datasets have trajectories of several thousand configurations
and are thus several gigabytes in size. Therefore, we still allow the use
of the positional hierarchy of quantized relative coordinates because
this gives us an acceptable compression rate of the dataset without
significantly increasing the workload on the CPU. The decompression
can be partially performed on the GPU by uploading the quantized co-
ordinates of the molecules and the full precision position of the parent
nodes to the graphics card. Quantizing the position using bytes re-
duces the file size to 70%, because the storage required for additional
attributes like quaternions, radii, and colors is not affected. These are
quantized to bytes independently. However, using single bytes yields
a relative positional error for the individual molecules of about 3%,
which is not acceptable. To reduce this error, a much larger hierarchy
would be needed, with each leaf node only storing the data of a small
group of molecules, which is also not acceptable since this would re-
duce rendering performance as only very small vertex arrays could be
used. Utilizing shorts instead of bytes results in an compression to
80%, but only introduces a relative error of about 0.01%, which is suf-
ficiently small. The effective space saving seems moderate, however
it only applies to positional information, which only makes up 25%
of a dataset (or 33.3% when no quaternions are present). These fac-
tors are applicable to all of our datasets (e.g. a 14.2 GB dataset with
float coordinates is compressed to 9.86 GB using bytes or 11.3 GB us-
ing shorts). We currently do not use additional compression like zlib
because this would increase the workload on the CPU too much.

The use of the hierarchy, however, causes problems when interpo-
lating the positions of the molecules. Either the hierarchy must be
constant over the complete trajectory (similar to the approach in [15])
or the interpolation of the positions must take place between the rel-
ative coordinates of different hierarchies. When considering cyclic

boundary conditions resulting in molecules traversing the whole sim-
ulation domain between two consecutive configurations, it becomes
obvious that a single hierarchy is not applicable to our datasets. An-
other problem is that we implicitly encode cluster membership through
the hierarchy, representing clusters by inner nodes. Therefore, we use
one hierarchy per configuration and adjust the coordinates of two con-
secutive configurations at loading time. In memory each configuration
stores start and end positions in relative, and optionally quantized, co-
ordinates in its single hierarchy. So these configurations no longer
represent the simulation state at a discrete point in time, but the in-
terpolated simulation states over a short period of time. This must be
taken into consideration by the preprocessor when constructing the hi-
erarchy, and some special cases exist when molecules cross the bound-
ary of the simulated area since usually cyclic boundary conditions are
used.

The large file sizes of the datasets are the reason why many vi-
sualization tools mentioned in Section 2 fail to load the datasets and
to render the molecules at interactive frame rates. We implemented
an out-of-core data streaming to overcome this problem. Our soft-
ware calculates the memory footprint of a single configuration of the
dataset to load. Because only the number of molecular clusters and
flow groups change over time, an approximated value can be calcu-
lated by examining the first and the last configuration of the dataset.
Considering this memory footprint and the amount of memory avail-
able, several buffers are created, used to store the current configuration
and to prefetch configurations which will be needed next when the tra-
jectory is played back as animation, controlled by a priority queue and
processed by a second thread. The offset information for all config-
urations in our file format allows the user to play back the trajectory
as animation forward and reverse at any speed, and to jump to any
configuration interactively.

The two derived data values calculated in the preprocessor which
either need information from future or past configurations, or which
affect past configurations, are the cluster time distance and the flow
groups. To define these, we first need some definitions of the elements
of our datasets: T = {0, ..., tmax} ⊂N0 is the time line of the dataset
with the discrete configuration times ti ∈ T, and M is the set of all
molecules in the dataset with the trajectory of molecule mi ∈M : t 7→
(xi(t),yi(t),zi(t))

T

Molecular clusters are identified by a natural number. The value
zero is used to represent molecules that are not part of a cluster. The
cluster membership of a molecule mi can be defined as:

c : M×T→N0,(mi, t) 7→ c(mi, t) (1)

A molecular cluster can then be defined as the time-dependent set of
the contained molecules:

S j(t) := {mi ∈M|c(mi, t) = j∧ j 6= 0} (2)

The cluster time distance is a signed value for each molecule, repre-
senting the distance in time to the next cluster:

ctd(mi, t) =

tc− t
if ∃tc∀tx : |tc− t| ≤ |tx− t|
with tc, tx ∈ {t j ∈ T|c(mi, t j) 6= 0}

nan else
(3)

The symbolic constant nan is used to indicate that a molecule is never
part of a cluster and that the set used in the first case therefore would
be empty. Since this set needs to know the cluster membership infor-
mation of the molecule from all configurations, it is obvious that these
values cannot be calculated in a single pass, without rewriting past
configurations. The same is true for the flow groups. A flow group is
a set of molecules M f moving together from one cluster to another:

M f (e,v, te, tv) :={m ∈M|c(m, te) = e∧ c(m, tv) = v

∧∀t ∈ (te, tv) : c(m, t) = 0}
with e 6= v , te < tv

(4)

So the flow group is defined by the configuration time te of its emer-
gence, the ID e of the cluster it is leaving, the time tv of its disappear-
ance, and the ID v of the cluster it is joining. We have developed this
concept in cooperation with our thermodynamics partners to investi-
gate the interexchange of molecules between clusters. We applied this
approach in the context of this paper to evaluate the stability of differ-
ent molecular clustering criteria. The preprocessor cannot detect such
a group until the molecules are joining with a new cluster, which takes
place in the configuration when the flow group vanishes.

3.2 Molecular Glyphs

One of the core components of our software is the interactive high-
quality rendering of the time-dependent molecular datasets, allowing
the user to explore the dataset in space and time. Previous works in-
troduce GPU-based glyphs created by raycasting an implicit surface,
represented by only few parameters (position, color, size, radii, ori-
entation quaternion), uploaded as an attributed point to the graphics
hardware. As basic objects we use hardware shaders for spheres,
dipole-glyphs, which are also used to represent unpolarized two-center
molecules, and ellipsoids. Since raycasting of such implicit surfaces,
including the calculation of optimal point sprite boundaries, in vertex
and fragment shaders is no new technique, we refer to [26] and [19]
for detailed information. Of course, all three shaders calculate correct
perspective distortion and are enabled for stereo rendering. To be able
to mix these objects with each other, we adapted the shader code to
write OpenGL-conforming depth values by projection using the built-
in matrices. The color of the glyphs is normally used to identify the
different types of molecules and their clustering (see Figure 1). The
user specifies two colors for each molecule type, one for monomers
and one for clustered molecules. Section 3.4 will show some alterna-
tive mappings.

Fig. 1. The left image shows the TEM-1 dataset using spheres, color-
coding the atom type. The right image shows the R-152a dataset using
dipole glyphs and color-coding whether the molecule is a monomer (red)
or part of a cluster (blue). Molecules farther away from the viewer are
faded out to enhance the depth perception.

Our molecule rendering is a combination of these glyphs with the
out-of-core data streaming mechanism described in Section 3.1. The
framework can also be used in virtual environments, using stereo out-
put devices like multiple projectors powered by a graphics cluster. To
further enhance the perception, we provide depth cues by fading the
glyphs according to their distance to the camera (shown in the right
image of Figure 1).

However, like our screen shots in this paper might show, viewing all
molecules results in heavily cluttered images. Effects and situations
inside the simulated area can hardly be observed. This visualization
mode is only good for qualitatively examining the dataset, and in later
configurations for identifying regions in space and time where inter-
esting effects take place, but the images are insufficient for judging the
molecular cluster detection algorithm or identifying problems of this
algorithm. To overcome this problem, the data must be filtered and the
molecular clusters as features of interest must be emphasized.

3.3 Visual Representation of Molecular Clusters
The first step to emphasize the molecular clusters is to change their
visual representation from multiple molecule glyphs to a single graph-
ical object with roughly the same shape. Since the molecular clusters
represent droplets, the surface tension will bring them into a nearly
spherical shape as soon as the cluster reaches a sufficiently large size.
So representing the clusters as ellipsoids is an obvious choice. Using
shaded ellipsoids, the user can perceive the position and extent of the
molecular clusters more easily, even if a large number of monomers
occlude portions of the ellipsoid as shown in Figure 2. The ellipsoids
can also be shown as a transparent overlay over the monomers con-
tained in a cluster (see Figure 7, right image).

Fig. 2. Molecular clusters are normally represented using a simple color
coding (left). Using ellipsoids allows to easier perceive the shape of the
clusters (right).

The ellipsoid parameters are calculated similarly to [31]. The po-
sition e j(t) = (x̄(t), ȳ(t), z̄(t))T of the center of the ellipsoid is the av-
erage position of all molecules forming the cluster. The main axes
are determined using the eigenvectors of the covariance matrix. The
eigenvalues and eigenvectors of the covariance matrix are then calcu-
lated and sorted according to the eigenvalues. The normalized eigen-
vector of the largest eigenvalue is used as first main axis. The other
two main axes are then calculated using the eigenvector of the sec-
ond largest eigenvalue and cross products. The radii of the ellip-
soid are given by the projection of the contained molecule positions
onto the main axes. The resulting ellipsoid will miss some border
molecules, but this number is negligible since we can safely assume
roughly spherical shape, as mentioned earlier.

Interpolating between two ellipsoids is not straightforward. First,
the ellipsoid is symmetric, so two axes can be flipped without the
shape changing. Second, and this is the more critical aspect, inter-
polation can either minimize the scaling or minimize the rotation of
the ellipsoid. The first approach will interpolate between the radii of
the ellipsoid, which results in the biggest radius remaining the biggest
radius. The orientation quaternions are then directly interpolated using
SLERP [6]. The second approach will select pairs of axes such that the
rotation is minimized. The orientation quaternion of the targeted con-
figuration must then be recalculated, which can be performed at load-
ing time. However, the differences between these two interpolation
methods are only visible if very unstable clusters are used, and then
both approaches result in rather strange animations, either spinning or
wobbling. So we decided to interpolate the quaternions directly, with-
out any recalculation of these values, keeping the order of the radii
unchanged and accepting the spinning effect in rare situations.

The default coloring of the ellipsoid corresponds to the user-defined
color used when the molecules are rendered individually to obtain vi-
sual coherence. There are two alternative coloring schemes available:
the first one uses a palette of clearly distinguishable colors from which
a color is selected using the ID of the cluster modulo the number of
entries in this color table. This color coding allows to easily check
the tracking of clusters over time when the monomers are filtered out.
The second alternative coloring scheme emphasizes the evolution of
the molecular cluster. Three user-defined colors represent the major
evolution tendencies of the clusters. The default colors are light yel-
low for clusters keeping their size, light green for growing and light red

Fig. 3. Molecular cluster ellipsoids with color coded evolution and fil-
tered monomers, color-coded whether they are joining or leaving clus-
ters. Clusters with colors between yellow and red are decaying (left
cluster), while clusters with colors between yellow and green are grow-
ing (right cluster).

for decaying clusters. These colors are interpolated according to the
real evolution (e.g. slow-growing clusters are colored in light greenish
yellow; see Figure 3).

3.4 Visual Representation of Monomers
The default visual representation of monomers is the point-based ren-
dering of the molecules as either spheres or dipole glyphs. However,
showing all monomers is not practicable because it will generate heav-
ily cluttered images, as already mentioned in Section 3.2. The first
approach is a filtering of the monomers according to their importance
for the evolution of a molecular cluster. As basis for this filtering we
introduced the cluster time distance described in Section 3.1. Only
monomers are rendered whose absolute value of the cluster time dis-
tance is smaller than a user defined threshold: ctd(mi, t) < ε f ilter. To
further emphasize the contribution of the monomers to the evolution
of molecular clusters, the molecules are color-coded according to the
sign of their cluster time distance, showing molecules joining a clus-
ter in green, and molecules leaving a cluster in red, or in other user-
defined colors (See Figure 3). One interesting situation is given by
monomers starting as red, leaving molecules and then switching their
color to green. If this occurs with rather small filtering thresholds, it
can indicate cluster detection instabilities.

It can be easily understood that it is hard to perceive these situ-
ations, because the changes of the monomers’ colors happen rather
quickly. To overcome this problem we used the information of the
filtered monomers to produce a pathline visualization, by connecting
the positions of these molecules over time. The pathline information
is generated at load-time, so no additional information in the input file
format is used. However, the creation of this information increases the
memory needed and the workload on the CPU. But using these path-
lines allows to track the movement of the monomers over a period of
time, which clarifies the joining, leaving, and rejoining phenomenon
described above. Because the pathlines represent information of sev-
eral configurations, the images tend to be more cluttered compared to
rendering the filtered monomers.

Therefore, we decided to create a sparse visualization of the
monomer movement between different molecular clusters, the flow
groups M f (e,v, te, tv) described in Section 3.1. These are visualized
as arrows, moving from the averaged position of all molecules in the
starting configuration to the averaged position in the ending configu-
ration. Hence, all information about the trajectory of the individual
molecules is disregarded in this visualization.

The size of each arrow is calculated from the number of contained
molecules. For the mapping from the number of molecules to the size
of the arrow we used the cubic root with the factor provided by the
Kepler conjecture (π√

18
' 0.74048), which corresponds to the closest

packing of similar-sized spheres:

r(M f) = rm
3

√√
18
π
|M f | (5)

with rm being the radius of the molecules and r(M f) being the size of

Fig. 4. Evaporating molecular cluster (red cluster ellipsoid in the mid-
dle of the left image) leaving a flow group (blue sphere, centered im-
age) containing almost all molecules of the evaporated cluster, moving
slowly and forming a new cluster (green ellipsoid in the right image).
The smaller clusters in the left part of the images is surrounded by flow
groups, but these are red and the cluster is rather stable (see Section 5).

a flow group-enclosing sphere M f . The arrowhead radius, head and
tail lengths are then set to the radius of this sphere to obtain a visually
similar impression of volume, while additionally emphasizing its flow
direction. This approach creates glyphs with a good representation of
the amount of molecules in each flow group and allows for a quali-
tative comparison of flow groups and molecular clusters. To create a
further coupling between the size of the flow group and the size of
the molecular clusters involved, we use a special color coding of the
flow group’s arrow. The color is interpolated between two base col-
ors depending on the ratio of the flow group molecule count and the
molecular cluster molecule count. A completely blue flow group holds
all molecules which formerly formed the molecular cluster, while an
almost red flow group only holds very few molecules compared to the
number of molecules in the cluster. So the effect that molecular clus-
ters are present but missed by the cluster detection algorithm appears
as a cluster vanishing, a rather blue flow group emerging, and a new
cluster emerging where the still blue flow group vanishes (See Fig-
ure 4). Due to the clear coloring and the sparse visualization, these
effects can easily be observed.

4 SCHEMATIC VIEW OF CLUSTER EVOLUTION

The molecule visualization allows to qualitatively judge the dataset
as a whole as well as the cluster detection. This direct visual repre-
sentation of the molecular datasets also allows to identify positions
in space and time in the dataset where the clustering detection poten-
tially fails to create proper results. However, it is hard to get quan-
titative proof in such situations, without switching to another tool to
analyze the dataset. But using different tools complicates the work-
flow since neither synchronized selection nor coordinated views are
available. So the potential error situation found in one tool must be
found again in the other one, using low-level information like the IDs
of the molecules or clusters. Our system allows to quantitatively an-
alyze the molecular clusters and their evolution without changing the
tool at all. For this, we created a schematic view of the evolution of the
individual clusters in addition to the molecule visualization presented
in Section 3.

Fig. 5. The schematic view of the molecular cluster evolution with two
selected clusters (red) and all corresponding flow groups connecting to
other clusters (black) shows the 10,000 methane nucleation dataset with
geometrical cluster detection. The flow groups’ colors are based on the
IDs e and v.

The two object classes represented in this view are the molecule

clusters and the flow groups. The horizontal axis of the view repre-
sents the time line T of the dataset. Molecule clusters S j(t) are repre-
sented as horizontal lines. These cluster lines are vertically ordered by
their IDs j, but can also be rearranged by the user to generate clearer
images. The size |S j(t)| of a molecular cluster can be encoded as the
thickness of the line. Because this is a time-varying value, the thick-
ness changes when moving along the line horizontally, so that the line
appears as a symmetric stripe.

The flow groups are also represented as lines, encoding their size
|M f (e,v, te, tv)| as thickness, making them directly comparable to the
lines representing molecular clusters. They are rendered as Bézier
curves connecting the molecular cluster lines e and v at the times te
and tv. So the amount of molecules leaving the cluster at a time, rep-
resented by the decrease in the line width, can be compared with the
amount of molecules leaving as a flow group. To ease the tracking of
the flow groups, we support different color mappings from solid color
with simple alpha blending to coloring based on the cluster IDs e and
v to visually group the different flow groups between pairs of clusters.

Of course, the schematic view can be interactively zoomed and
panned to maximize the effectiveness of the exploration of the dataset.
Molecular cluster lines can be interactively selected by either clicking
on the line in the schematic view or by picking the molecular clus-
ter ellipsoid in the molecule rendering. Selected clusters are rendered
with a different color in the schematic view and rendered with a halo
for better perceptibility in the molecule view. The schematic view can
then be filtered to only show the selected cluster lines, the connected
flow groups, and the cluster lines directly connected to the shown flow
groups.

5 RESULTS

We present results for the following four datasets: two datasets of
methane nucleation simulations, one with 10,000 spherical molecules
and a trajectory of 5000 configurations, and one with 50,000 spheri-
cal molecules and 10,000 configurations. The last dataset represents a
nucleation simulation of Difluoroethane (R-152a) with 100,000 two-
center molecules and 1000 configurations. These three datasets are
used to demonstrate our different visualization modes, including the
molecular cluster ellipsoids and the flow groups. We also worked with
a biochemical simulation of TEM-1 β -lactamase in water solvent with
28,000 atoms (spheres) and 2000 configurations, to compare our sys-
tem with other applications.

Table 1. Performance and memory footprints for different datasets. Fps
is an average value calculated over the complete trajectory. Reloading
specifies the number of configurations consistently loadable per second.

dataset memory footprint fps reloading
10,000 methane 1.561 MB 350 43
50,000 methane 7.801 MB 127 29
R-152a 15.600 MB 53 7
Tem1 1.114 MB 382 64

In comparison to widely used tools like VMD or Chimera, we found
that their implementations are quite inefficient especially for time-
dependent datasets. The TEM-1 dataset in the AMBER format can
be loaded directly into Chimera at a rate of about 2 configurations
per second and into VMD at about 5 configurations per second. Both
tools offer the benefit that no preprocessing needs to be performed,
but this also means that the user must wait 15 (or seven in the case
of VMD) minutes before starting to work with the dataset as a whole.
Our approach requires a preprocessing step, but accelerates the load-
ing to more than 45 configurations per second. The performance of
Chimera furthermore degrades so much while loading that it becomes
unusable. This does not happen with our tool as it is designed to con-
tinually stream data thus not forcing the user to wait until the loading
process is complete.

Table 1 shows performance values for the direct rendering of all
molecules as individual glyphs. For other visualization modes, the
values for fps and reloading vary. However, since these modes gen-
erate less graphical primitives (molecules of clusters are omitted and

only one ellipsoid is drawn per cluster) the frame rates increase. The
reloading values vary for a single dataset on different visualization
modes because the amount of calculations performed at loading time
differs. However, these variations are negligible, except for the path-
lines, where the reloading rates can decrease down to 90% in most
cases and 25% in the worst case (R-152a). Since our system uses a
data streaming mechanism, the sizes of the data files on disk or in
memory are not significant, as described in Section 3.1. Therefore ta-
ble 1 only presents the average size in memory of one configuration
for each dataset. The complete file size of the datasets is shown in
table 2.

We ran our performance tests on a Intel Core2 Duo 6600 processor
with 2.40 GHz, 2 GB memory, and an NVidia GeForce 8800 GTX
graphics card with 768 MB graphics memory. The viewport size was
5122 for all tests. All files were stored on the local SATA hard drive
(no RAID hardware was used).

Table 2. Preprocessing times for all nucleation datasets. The total time
is given in hours and minutes, while the time per configuration is given
in minutes and seconds.

dataset file size total time time per configuration
10,000 methane 2.6 GB 0:37:00 0:00.4
50,000 methane 24.9 GB 21:23:00 0:07.7
R-152a 8.7 GB 29:42:00 1:46.9

Table 2 shows the preprocessing times needed to prepare the
datasets. The table does not show the times for the TEM-1 dataset.
Since this is no nucleation simulation no derived data must be calcu-
lated and the preprocessor is only needed to convert the file format,
which is almost as fast as simply copying the file over network. When
preprocessing the three nucleation data files, however, the derived data
has to be calculated which is a time consuming process. Since the
datasets have trajectories of different length, Table 2 also shows the
average calculation time per configuration, for better comparability.
While the times of the both methane nucleation datasets are quite ac-
ceptable, the R-152a dataset needs a conspicuously long time to be
preprocessed. This is due to the special structure of the data, where
after a short period of time almost all molecules are clustered in many
rather small clusters, making the cluster tracking, for example, rather
expensive. These preprocessor runs were performed on a single ma-
chine with an AMD Opteron 248 processor running at 2.2Ghz with
4GB RAM. Compared to the simulations calculated on cluster com-
puters with multiple processors and still needing several days, up to
multiple weeks, the preprocessing time is acceptable. Planned im-
provements will be outlined in Section 6.

Playing back the trajectory as animation reveals flow groups tem-
porarily taking the place of small clusters, as shown in Figure 4, which
indicates a problem with the cluster detection. On the other hand, big-
ger clusters are always surrounded by some flow groups because many
molecules first hit a cluster, but cannot join it immediately because of
too different speeds and energy levels. They rebound, get slowed down
and then join the cluster some configurations later. However, it is cur-
rently not clear if this is an error in the classification or if this is a valid
effect needed to obtain meaningful results. To clarify the observed
situation, the molecule rendering alone is insufficient. The schematic
view of the clusters’ evolutions provides additional insight.

Figure 6 shows two schematic views of the 50,000 methane nu-
cleation dataset comparing a cluster detected with two different algo-
rithms. The algorithm employed in the left view uses only the sim-
ple geometrical distances between molecules to define adjacencies. A
molecule with a pre-defined number (normally four) of such neighbors
seeds a cluster. The algorithm applied in the right view defines two
molecules as clustered if the sum of their potential energy and their
relative kinetic energy is negative[12]. This energy-based approach
yields far better results when extrapolated to experimental values. The
geometrical clustering not only detects too many and too large clusters,
but also often creates multiple close-by clusters instead of a single one.
The small red cluster S3007 at the top of the left schematic view is such
an example. The ends of this cluster are connected to the lower and

ge
om

et
ric

 c
lu

st
er

in
g

en
er

ge
tic

 c
lu

st
er

in
g

89t 90t 91t 92t 93t 90t 91t 92t

Fig. 6. Schematic views of two clustering algorithms applied to the 50,000 methane nucleation dataset. The top left image shows the results of a
pure geometric clustering, and the top right image shows the results of a clustering based on energy levels. The lower images show zoomed in
views of the selected cluster at different configurations. The geometrical clustering not only detects too large and too many clusters, it also splits
one cluster into two for three configurations. The flow groups’ colors are based on the cluster IDs e and v, such that flow groups between pairs of
clusters are colored identically for easier visual tracking.

bigger red cluster S2912 with thick flow groups indicating that almost
all molecules of S3007 came from and rejoin S2912. The clustering
with the energy-based algorithm shown in the right image does not
exhibit such splintering clusters. Here, the cluster corresponding to
S2912 is cluster S689, which is rather constant in its size compared to
the clear dent in S2912 in configuration t91. There are only very small
flow groups of only one or two molecules, which is characteristic for
normal fluctuation between adjacent clusters.

Another interesting situation is given on the left side of the left
schematic view in Figure 6, where the black cluster S2805 feeds cluster
S2912 before it vanishes. Without the molecule view, the reason for this
issue can hardly be identified. With the coupled view, we were able to
see that cluster S2805 got rather slim and long around configuration t88
so that the geometrical approach failed to get the required four neigh-
bors for one molecule to detect the cluster. Similar situations can be
observed in the smaller 10,000 methane nucleation dataset. A small
part of the graph of the geometric cluster detection for this dataset is
shown in Figure 5.

Fig. 7. Schematic view (left) and molecule view (right) with transparent
cluster ellipsoids and monomers (red; clustered molecules cyan) of the
R-152a nucleation simulation. Almost all molecules are very quickly
clustered in many rather small and stable clusters (appearing yellow in
this color-scheme). Greater changes only happen when two clusters
merge, which is clearly indicated by the corresponding thick flow groups
in the schematic view.

All these findings are dataset-dependent, as Figure 7 shows. The
nucleation of the refrigerant Difluoroethane (R-152a) results in most
molecules clustered in many rather small droplets. Almost no fluctua-

tion between the clusters takes place, except for rebounding molecules
forming small flow groups as described above and for the merging of
clusters, clearly indicated by large flow groups in the schematic view.
Any errors in the cluster detection could therefore be spotted rather
quickly. However, for this dataset the energetic clustering produces
very good results.

The findings derived with our tool have already been applied to cur-
rent research. The inadequacies in the geometric clustering algorithm
used by our thermodynamics cooperation partners have been discov-
ered with our tool. An improved energy-based algorithm based on the
knowledge of the failure situations of the existing clustering algorithm
has then been developed. However, in some situations also the pure
energetical clustering delivers incorrect results. Thus, a combination
of these approaches was created. The results of this hybrid clustering
algorithm still vary depending on the simulation data. We are still in-
vestigating which of the energetical or hybrid approaches leads to the
best results.

6 CONCLUSION

The system we presented in this paper allows thermodynamics re-
searchers to analyze molecular cluster detection algorithms and to in-
teractively explore time-dependent molecule nucleation datasets in an
efficient and effective manner. The molecular visualization allows to
identify points in space and time where molecular cluster detection
may have failed. A directly coupled schematic view of the molecu-
lar cluster evolutions and the interaction between molecular clusters,
represented by the introduced flow groups, allows to quickly verify
the findings and to enhance the analysis of the observed situations, ex-
tracting valuable information on how to improve the cluster detection
algorithms. The results section showed that our system is able to help
users identify failures and weak spots in the cluster detection and that
the workflow we presented is applicable to the given problem.

We believe that our approach can also be applied to other research
fields using any kind of feature detection and tracking in scattered
datasets like physics, biochemistry, and materials. Suitable cooper-
ations with researchers from the areas of technical biochemistry and
physics are in progress, and we are extending our software with addi-
tional visualization modes common in these fields as well as support-
ing other file formats and features.

The main drawback of our system is the need for the preprocess-
ing step since we cannot perform the necessary calculations in real-
time within the visualization software. We are going to optimize the
preprocessor for parallel computation on PC clusters to minimize the
time needed for preprocessing. Integration into the visualization soft-
ware would allow to interactively view the dataset with an on-demand
preprocessing of the requested configurations. In the case of on-line
visualization we aim for a closer coupling between our preprocessing
and simulation, since for calculation of our derived data we need in-
formation already available in the simulation, but which is too large to
store in the resulting dataset.

ACKNOWLEDGEMENTS

This work is partially funded by the Landesstiftung Baden-
Württemberg and by the DFG SFB 716. We want to thank Thomas
Klein for his ellipsoid raycasting shader and the assistance provided in
using it and Matthias Hopf for the pointcloud source code our work is
based on. We also want to thank Martin Bernreuther for managing the
simulation runs of most of the datasets used in this paper.

REFERENCES

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford
University Press, 1987.

[2] amira. http://www.amiravis.com/.
[3] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol: Interac-

tive visual exploration of large flexible multi-component molecular com-
plexes. In VIS ’04: Proceedings of the conference on Visualization ’04,
pages 243–250. IEEE Computer Society, 2004.

[4] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality render-
ing of point sampled geometry. In EGRW ’02: Proceedings of the 13th
Eurographics workshop on Rendering, pages 53–64, 2002.

[5] B. Cabral and L. Leedom. Imaging vector fields using line integral con-
volution. In Proceedings of SIGGRAPH, pages 263–270. ACM Press,
1993.

[6] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and an-
imation. Technical report, Department of Computer Science, University
of Copenhagen, 1998.

[7] W. DeLano. Pymol: An open-source molecular graphics tool. CCP4
Newsletter On Protein Crystallography, 40, 2002.

[8] J. A. Fisk, M. M. Rudek, J. L. Katz, D. Beiersdorf, and H. Uchtmann.
The homogeneous nucleation of cesium vapor. Atmospheric Research,
46:211–222, 1998.

[9] I. Ford. Statistical mechanics of nucleation: a review. In Proceedings of
the Institution of Mechanical Engineers, Part C, Journal of Mechanical
Engineering Science, volume 218, pages 883–899, August 2004.

[10] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In
Proceedings of 8th International Fall Workshop on Vision, Modelling and
Visualization, pages 245–252, 2003.

[11] A. Halm, L. Offen, and D. Fellner. BioBrowser: A Framework for Fast
Protein Visualization. In Proceedings of EUROGRAPHICS - IEEE VGTC
Symposium on Visualization Eurovis ’05, pages 287–294, 2005.

[12] T. L. Hill. Molecular clusters in imperfect gases. The Journal of Chemical
Physics, 23:617–622, April 1955.

[13] D. Honeycutt and H. C. Andersen. Molecular dynamics study of melting
and freezing of small Lennard-Jones clisters. Journal of Physics and
Chemistry, 91:4950–4963, 1987.

[14] M. Hopf and T. Ertl. Hierarchical Splatting of Scattered Data. In Pro-
ceedings of IEEE Visualization ’03. IEEE, 2003.

[15] M. Hopf, M. Luttenberger, and T. Ertl. Hierarchical Splatting of Scattered
4D Data. IEEE Computer Graphics and Applications, 24(4):64–72, 2004.

[16] W. Humphrey, A. Dalke, and K. Schulten. Vmd – visual molecular dy-
namics. Journal of Molecular Graphics, 14:33–38, 1996.

[17] V. Interrante and C. Grosch. Visualizing 3D flow. IEEE Computer Graph-
ics and Applications, 18(4):49–53, 1998.

[18] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian Ad-
vection of Noise and Dye Textures for Unsteady Flow Visualization.
IEEE Transactions on Visualization and Computer Graphics, 8(3):211–
222, 2002.

[19] T. Klein and T. Ertl. Illustrating Magnetic Field Lines using a Discrete
Particle Model. In Workshop on Vision, Modelling, and Visualization
VMV ’04, 2004.

[20] P. J. Kraulis. Molscript - a program to produce both detailed and
schematic picts of protein structures. Journal of Applied Crystallogra-
phy, 24:946–950, 1991.

[21] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Un-
derstanding the structure of the turbulent mixing layer in hydrodynamic
instabilities. IEEE Trans. Vis. Comput. Graph., 12(5):1053–1060, 2006.

[22] E. Martz. Protein explorer: Easy yet powerful macromolecular
visualization. Trends in Biochemical Sciences, 27:107–109, 2002.
http://proteinexplorer.org.

[23] N. Max. Hierarchical molecular modelling with ellipsoids. Journal of
Molecular Graphics and Modelling, 23(3):233–238, 2004.

[24] R. Pajarola, M. Sainz, and P. Guidotti. Confetti: Object-space point
blending and splatting. IEEE Transactions on Visualization and Com-
puter Graphics, 10(5):598–608, 2004.

[25] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Green-
blatt, E. C. Meng, and T. E. Ferrin. Ucsf chimera - a visualization system
for exploratory research and analysis. Journal of Computational Chem-
istry, 25(13):1605–1612, 2004.

[26] G. Reina and T. Ertl. Hardware-Accelerated Glyphs for Mono- and
Dipoles in Molecular Dynamics Visualization. In Proceedings of EU-
ROGRAPHICS - IEEE VGTC Symposium on Visualization Eurovis ’05,
2005.

[27] L. Ren, H. Pfister, and M. Zwicker. Object Space EWA Surface Splat-
ting: A Hardware Accelerated Approach to High Quality Point Render-
ing. Computer Graphics Forum, 21(3), 2002.

[28] J. W. P. Schmelzer, G. S. Boltachev, and V. G. Baidakov. Is Gibbs’ ther-
modynamic theory of heterogeneous systems really perfect? In J. W. P.
Schmelzer, editor, Nucleation Theory and Applications, pages 418–446.
Wiley-VCH, 2005.

[29] T. Schnabel, J. Vrabec, and H. Hasse. Molecular modeling of hydrogen
bonding fluids: Monomethyamine, dimethylamine, and water revised. In
W. E. Nagel, W. Jäger, and M. Resch, editors, High Performance Com-
puting in Science and Engineering ’06, pages 515–525. Springer, 2006.

[30] A. Sharma, A. Nakano, R. K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller,
W. Zhao, X. Liu, T. J. Campbell, and A. Haas. Immersive and interactive
exploration of billion-atom systems. Presence, 12(1):85–95, 2003.

[31] T. C. Sprenger, M. H. Gross, A. Eggenberger, and M. Kaufmann. A
Framework for Physically-Based Information Visualization. In Proceed-
ings of Eurographics Workshop on Visualization ’97, pages 77–86, 1997.

[32] Y. Suzuki, I. Fujishiro, L. Chen, and H. Nakamura. Case Study:
Hardware-Accelerated Selective LIC Volume Rendering. In Proceedings
of IEEE Visualization, pages 485–488, 2002.

[33] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cue-
ing for enhancing real time molecular visualization. IEEE Trans. Vis.
Comput. Graph., 12(5):1237–1244, 2006.

[34] E. Tejada, J. Gois, L. G. Nonato, A. Castelo, and T. Ertl. Hardware-
accelerated Extraction and Rendering of Point Set Surfaces. In Proceed-
ings of EUROGRAPHICS - IEEE VGTC Symposium on Visualization Eu-
rovis ’06, pages 21–28, 2006.

[35] M. Volmer and A. Weber. Keimbildung in gesättigten Gebilden.
Zeitschrift für Physikalische Chemie A, 119:277–301, 1926. (in German).

[36] J. Vrabec, J. Stoll, and H. Hasse. A set of molecular models for symmetric
quadrupolar fluids. Journal of Physical Chemistry B, 105:12126–12133,
2001.

[37] D. Weiskopf and T. Ertl. A Hybrid Physical/Device-Space Approach
for Spatio-Temporally Coherent Interactive Texture Advection on Curved
Surfaces. In Proceedings of Graphics Interface 2004, pages 263–270,
2004.

[38] D. Weiskopf, T. Schafhitzel, and T. Ertl. Real-Time Advection and Vol-
umetric Illumination for the Visualization of 3D Unsteady Flow. In Pro-
ceedings of EG/IEEE TCVG Symposium on Visualization Eurovis ’05,
pages 13–20, 2005.

[39] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In
SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 371–378. ACM Press,
2001.

